PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adequate determination of micro and macro properties of optical nano-crystals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main problem in theoretical analysis of structures with strong confinement is the fact that standard mathematical tools: differential equations and Fourier’s transformations are no longer applicable. In this paper we have demonstrated that the method of Green’s functions can be successfully used on low-dimension crystal samples, as a consequence of quantum size effects. We can illustrate a modified model through the prime cubic structure molecular crystal: bulk and ultrathin film. Our analysis starts with standard exciton Hamiltonian with definition of commutative Green’s function and equation of motion. We have presented a detailed procedure of calculations of Green’s functions, and further dispersion law, distribution of states and relative permittivity for bulk samples. After this, we have followed the same procedures for obtaining the properties of excitons in ultra-thin films. The results have been presented graphically. Besides the modified method of Green’s functions we have shown that the exciton energy spectrum is discrete in film structures (with a number of energy levels equal to the number of atomic planes of the film). Compared to the bulk structures, with a continual absorption zone, in film structures exist resonant absorption peaks. With increased film thickness differences between bulk and film vanish.
Twórcy
  • University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovic’a 4, 21.000 Novi Sad, Vojvodina, Serbia
Bibliografia
  • [1] V.M. Agranovich, V.L. Ginzburg, Crystal Optic with Space Dispersion and Theory of Excitons, Nauka, Moskwa, 1979 (in Russian).
  • [2] Ch. Kittel, Quantum Theory of Solids, Wiley & Sons, New York, 1963.
  • [3] G. Mahan, Many Particle Physics, Plenum Press, New York, 1990.
  • [4] M.G. Cottam, D.R. Tilley, Introduction to Surface and Superlattice Excitations, University Press, Cambridge, 1989.
  • [5] S.G. Davison, M. Steslicka, Basic Theory of Surface States, Clarendon Press, Oxford, 1996.
  • [6] V.M. Agranovich, K. Schmidt, K. Leo, Surface states in molecular chains with strong mixing of frenkel and charge-transfer excitons, Chem. Phys. Lett. 325 (2000) 308.
  • [7] A. Langner, A. Hauschild, S. Fahrenholz, M. Sokolowski, Structural properties of tetracene films on Ag(1 1 1) investigated by SPA-LEED and TPD, Surf. Sci. 574 (2–3) (2005) 153.
  • [8] W.J. Doherty III, A.G. Simmonds, S.B. Mendes, N.R. Armstrong, S.S. Saavedra, Molecular ordering in monolayers of an alkyl-substituted perylene-bisimide dye by attenuated total reflectance ultraviolet-visible spectroscopy, Appl. Spectrosc. 10 (2005) 1248.
  • [9] L.L. Chang, L. Esaki, Semiconductor quantum heterostructures, Phys. Today 45 (10) (1992) 36.
  • [10] I. Vragovich, R. Scholz, M. Schreiber, Model calculation of the optical properties of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) thin films, Europhys. Lett. 57 (2002) 288.
  • [11] J.P. Šetrajčić, D.I. Ilić, B. Markoski, A.J. Šetrajčić, S.M. Vučenović, D. Lj. Mirjanić, B. Škipina, S. Pelemiš, Adapting and application of the green’s functions method onto research of the molecular ultrathin film optical properties, in: 15th Central European Workshop on Quantum Optics, Belgrade, 2008.
  • [12] I.D. Vragovich, R. Scholz, J.P. Šetrajčić, Optical properties of PTCDA bulk crystals and ultrathin films, Mater. Sci. Forum 518 (2006) 41.
  • [13] G. Rickayzen, Green’s Functions and Condensed Matter, Academic Press, London, 1980.
  • [14] E.N. Economou, Green’s Functions in Quantum Physics, Springer, Berlin, 1949.
  • [15] A.S. Davidov, Theory of Molecular Excitons, Nauka, Moskwa, 1908 (in Russian).
  • [16] M.C. Tringides, M. Jatochawski, E. Bauer, Quantum size effects in metallic nanostructures, Phys. Today 60 (4) (2007) 50.
  • [17] I. Frenkel, On the transformation of light into heat in solids. I & II, Phys. Rev. 37 (17) (1931) 1276.
  • [18] R.P. Djajić, D. Lj. Mirjanić, B. Nikin, J.P. Šetrajčić, B.S. Tošić, Stimulated absorption in ferroelectrics, J. Phys. C 20 (1987) 5585.
  • [19] V.M. Agranovich, B.S. Toshich, Collective properties of frenkel excitons, Zh. Eksp. Teor. Fiz. 53 (1967) 149 (Sov. Phys.-JETP 26 1968 104).
  • [20] I.E. Dzyaloshinskii, L.P. Pitaevskii, Van der waals forces in an inhomogeneous dielectric, Zh. Eksp. Teor. Fiz. 36 (1959) 1797 (Sov. Phys. JETP 9 1959 1282).
  • [21] G. Arfken, Mathematical Methods for Physicists, 3rd ed., Academic Press, Orlando, 1985.
  • [22] T.J. Rivlin, Chebyshev Polynomials, Wiley, New York, 1990.
  • [23] A.B. Djurisic, T. Fritz, K. Leo, Modeling the optical constants of organic thin films: application to 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), Opt. Commun. 183 (2000) 123.
  • [24] R. Friedlen, M.P. de Jong, S.L. Sorensen, W. Osikowicz, S. Marciniak, G. Öwall, A. Lindgren, W.R. Salaneck, Resonant auger spectroscopy on perylene, porphyrine and hexabenzocoronene thin films, in: The 2 nd Workshop on Advanced Spectroscopy of Organic Materials for Electronic Applications, Kanagawa, 2003.
  • [25] F. Würthner, C. Bauer, V. Stepanenko, S. Yagai, A black perylene bisimide super gelator with an unexpected J-type absorption bank, Adv. Mater. 20 (2008) 1695.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af95e826-4738-4ec5-8e14-7171f074f06a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.