PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parameters used for prediction of settlement trough due to TBM tunnelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Parametry stosowane przy ocenie niecki osiadań wywołanej drążeniem tuneli tarczami TBM
Języki publikacji
EN
Abstrakty
EN
One of major design problems associated with shallow tunnelling in urbanized areas is the prediction of ground displacements caused by the construction process. Advanced tunnelling techniques such as shield tunnelling using Earth Pressure Balance Tunnel Boring Machines (EPB-TBMs) allow for significant reductions of settlements observed at the ground surface in comparison to tunnelling methods used in the past. The predictions of these displacements are often based on semi-empirical methods and prior experience. In addition to relative simplicity of such methods, their robustness and decades of validation in many tunnelling projects make them attractive for practical use. The tunnelling-induced settlement trough at the ground surface can be described by inversed Gaussian distribution function. It requires only the assumption of two parameters, namely: expected volume loss (VL) and the distance to the point of inflection (iy ), which is dependent on the empirical trough width parameter (K) and the tunnelling depth (z0). The values of those parameters have a strongly empirical nature; they should be established based on comparable experience obtained from full scale tunnelling projects with similar technique and at similar ground conditions. The paper presents the problem of variability of those parameters and discusses the need for its assessment. As volume loss is strongly related to the tunnelling technique, the study focuses on EPB-TBM tunnelling as the most commonly implemented one in recent years. Variability of parameters observed for different ground conditions in different countries is summarized. Finally, preliminary assessment of variability of settlements observed in Warsaw region is presented.
PL
Jednym z głównych wyzwań związanych z projektowaniem płytko posadowionych tuneli na terenach zurbanizowanych jest predykcja deformacji podłoża wywołana procesem ich drążenia. Zaawansowane techniki realizacje takie jak zastosowanie tarcz zmechanizowanych TBM typu EPB pozwala na znaczną redukcję osiadań obserwowanych na powierzchni terenu, w porównaniu do technik stosowanych w przeszłości. Przewidywanie tych przemieszczeń jest oparte głównie o stosowanie modeli pół-empirycznych oraz wcześniejsze doświadczenia porównywalne. Poza samą prostotą tych metod, dekady ich stosowania w projektowaniu tuneli stanowią wystarczającą walidację skłaniającą projektantów do ich wyboru w analizach projektowych. W podejściu pół-empirycznym, niecka osiadania na powierzchni terenu wywołana tunelowaniem jest opisywana odwróconą funkcją rozkładu normalnego Gaussa. Wymaga to jedynie przyjęcia założeń odnośnie dwóch parametrów, mianowicie: spodziewanej utraty objętości (VL) oraz odległości do punktu przegięcia (iy), która zależy od empirycznego parametru charakteryzującego szerokość niecki (K) oraz głębokości tunelu (z0). Parametry te mają charakter silnie empiryczny i powinny być przyjmowane w oparciu o doświadczenia porównywalne uzyskane w skali rzeczywistej przy realizacji tuneli w danej technologii i podobnych warunkach gruntowych. Niniejszy artykuł przedstawia problem zmienności wyżej wymienionych parametrów oraz rozważa potrzebę ich dokładniejszej oceny. Ponieważ utrata objętości jest silnie związana z technologią realizacji tunelu, praca koncentruje się na technologii EPB-TBM, jako najpowszechniej stosowanej w ostatnich latach. Przedstawiono podsumowanie zmienności parametrów obserwowanych dla różnych warunków gruntowych w różnych krajach. Na koniec, przedstawiono również wstępną ocenę zmienności osiadań obserwowanych dla obszaru Warszawy.
Rocznik
Strony
351--367
Opis fizyczny
Bibliogr. 59 poz., il., tab.
Twórcy
  • Building Research Institute, Warsaw, Poland
  • Building Research Institute, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • [1] A. Athanasopoulou, et al., “Standardisation needs for the design of underground structures”, Publications Office of the European Union, Luxembourg, 2019, DOI: 10.2760/615209.
  • [2] M. Mitew-Czajewska, “A study of displacements of structures in the vicinity of deep excavation”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 547-556, 2019, DOI: 10.1016/j.acme.2018.11.010.
  • [3] M. Baralis, et al., “Geothermal potential of the NE extension Warsaw (Poland) metro tunnels”, Environmental Geotechnics, vol. 7, no. 4, pp. 282-294, 2020, DOI: 10.1680/jenge.18.00042.
  • [4] R.B. Peck, “Deep excavations and tunneling in soft ground - state of the art report”, in Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, pp. 225-290, 1969.
  • [5] W.H. Ward and M. J. Pender, “Tunnelling in Soft Ground - General Report”, in Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, pp. 261-275, 1981.
  • [6] R. J. Mair and R.N. Taylor, “Theme lecture: Bored tunnelling in the urban environment”, in 14th International Conference on Soil Mechanics and Foundation Engineering, pp. 2353-2385, 1997.
  • [7] K. Fujita, “Special lecture B: Underground construction, tunnel, underground transportation”, in Proceedings of the 12th International Conference SMFE, 1989.
  • [8] R.K. Rowe and G.J. Kack, “Atheoretical examination of the settlements induced by tunnelling: four case histories”, Canadian Geotechnical Journal, vol. 20, no. 2, pp. 299-314, May 1983, DOI: 10.1139/t83-033.
  • [9] M.E. Abdel Salam, “Contractual sharing of risks in underground construction: ITA views”, Tunnelling and Underground Space Technology, vol. 10, no. 4, pp. 433-437, 1995, DOI: 10.1016/0886-7798(95)00034-V.
  • [10] M. Ochmański, G. Modoni and J. Bzówka, “Automated numerical modelling for the control of EPB technology”, Tunnelling and Underground Space Technology, vol. 75, pp. 117-128, May 2018, DOI: 10.1016/j.tust.2018.02.006.
  • [11] M. Wedekin et al., “Urban tunnels in soft ground: Review of current design practice”, in Geotechnical Aspects of Underground Construction in Soft Ground, pp. 1047-1064, 2012, DOI: 10.1201/b12748-138.
  • [12] M. Mitew-Czajewska and A. Siemińska-Lewandowska, “The second metro line in Warsaw - Lessons learnt”, in ITA-AITES World Tunnel Congress, pp. 3148-3157, 2016.
  • [13] A. Siemińska-Lewandowska and R. Kuszyk, “Study of Subsiding Trough Expansion Over Twin Tube TBM Metro Tunnel”, Archives of Civil Engineering, vol. 64, no. 4, pp. 119-133, 2018, DOI: 10.2478/ace-2018-0066.
  • [14] R. Kuszyk and A. Siemińska-Lewandowska, “Volume loss and settlement trough in Warsaw II line”, in World Tunnel Congress, pp. 641-644, 2013.
  • [15] C. Madryas et al., “Innovative tunnelling and microtunnelling technologies of record parameters used in the construction of the sewage transfer system connected to the Czajka sewage treatment plant in Warsaw”, in 29th International No-Dig Conf., pp. 11-19, 2011.
  • [16] A. Żelaźniewicz et al., “The Wrocław metro: geology, hydrogeology and tunnelling perspective”, in Underground Infrastructure of Urban Areas, vol. 3, pp. 297-308, 2014.
  • [17] EN 1990: “Eurocode - Basis of structural and geotechnical design”, 2020.
  • [18] ISSMGE Report, “Final report of Joint TC205 / TC304 Working Group on Discussion of Statistical / Reliability Methods for Eurocodes”, 2017.
  • [19] K. Lesny et al., “Evaluation of the uncertainties related to the geotechnical design method and its consideration in reliability based design”, Geotechnical Special Publications, no. 283, pp. 435-444, 2017, DOI: 10.1061/9780784480700.042.
  • [20] A.G. Bloodworth, “Three-dimensional analysis of tunnelling effects on structures to develop design methods”, University of Oxford, 2002.
  • [21] J.A. Clarke and D.F. Laefer, “Evaluation of risk assessment procedures for buildings adjacent to tunnelling works”, Tunnelling and Underground Space Technology, vol. 40, pp. 333-342, 2014, DOI: 10.1016/j.tust.2013.10.014.
  • [22] V. Guglielmetti et al., “Mechanized tunnelling in urban areas design methodology and construction control”, London: Taylor and Francis, 2007, DOI: 10.1201/9780203938515.
  • [23] J. Fu et al., “Analytical prediction of ground movements due to a nonuniform deforming tunnel”, International Journal of Geomechanics, vol. 16, no. 4, p. 0401-5089, 2016, DOI: 10.1061/(ASCE)GM.1943-5622.0000580.
  • [24] A.R. Pickles and T.O. Henderson, “Some Thoughts on the use of numerical modelling in geotechnical design practice”, in Underground Construction in Soft Ground, 2005.
  • [25] W. Bogusz and T. Godlewski, “Geotechnical interaction in underground space - theory and practice”, Proceedings of the 13th International Conference Underground Infrastructure of Urban Areas, UIUA 2017, pp. 19-32, 2018, DOI: 10.1201/9780203712573-4
  • [26] W. Bogusz, “Risk management for tunnelling-induced deformations in relation to the Eurocodes”, Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, Proceedings of the WTC 2019 ITA-AITES World Tunnelling Congress, pp. 5390-5398, 2019, DOI: 10.1201/9780429424441-570.
  • [27] T.W. Lambe, “Predictions in soil engineering”, Géotechnique, vol. 23, no. 2, pp. 151-202, June 1973, DOI: 10.1680/geot.1973.23.2.151.
  • [28] W. Bogusz and T. Godlewski, “Philosophy of geotechnical design in civil engineering - possibilities and risks”, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 67, no. 2, pp. 289-306, 2019, DOI: 10.24425/bpas.2019.128258.
  • [29] L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: Conflict or harmony?”, Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 64, no. 4, pp. 665-673, 2016, DOI: 10.1515/bpasts-2016-0076.
  • [30] B. Schmidt, “Settlements and ground movements associated with tunneling in soil”, University of Illinois, 1969.
  • [31] J. Litviniszyn, “Displacements in Loess Bodies as Stochastic Processes”, Bull. L’Academie Pol. des Sci., vol. 3, no. 4, 1955.
  • [32] F. Martos, “Concerning an approximate equation of the subsidence trough and its time factors”, in Proceedings of International Strata Control Congress, pp. 191-205, 1958.
  • [33] R.J. Mair, “Tunnelling in urban areas and effects on infrastructure. Advances in research and practice - Muir Wood Lecture 2011”, ITA-AITES, 2011.
  • [34] BTS-ICE, “Tunnel lining design guide”, Thomas Telford, 2004, DOI: 10.1680/tldg.29866.
  • [35] W.J. Rankin, “Ground movements resulting from urban tunnelling: prediction and effect”, in Conference on Engineering Geology of Underground Movements, pp. 79-92, 1988.
  • [36] T.I. Addenbrooke, “Numerical analysis of tunnelling in stiff clay”, University of London, 1996.
  • [37] M.P. O’Reilly and B.M. New, “Settlements above tunnels in the United Kingdom - their magnitude and prediction”, in Tunnelling ’82, pp. 173-181, 1982.
  • [38] R.J. Mair, “Tunnelling and geotechnics: new horizons”, Géotechnique, vol. 58, no. 9, pp. 695-736, 2008, DOI: 10.1680/geot.2008.58.9.695.
  • [39] J.N. Franzius, “Behaviour of buildings due to tunnel induced subsidence”, Imperial College London, 2003.
  • [40] C.E. Augarde, “Numerical modelling of tunnelling processes for assessment of damage to buildings”, University of Oxford, 1997.
  • [41] S. Mahdi, O. Gastebled and S. Khodr, “Back analysis of ground settlements induced by TBM excavation for the north extension of Paris metro, line 12”, in World Tunnel Congress, 2019, pp. 2606-2615, DOI: 10.1201/9780429424441.
  • [42] T. Sinclair, T. Hulme, and D. Andrews, “Settlements over Bored Tunnels - Fantasy and Fact!”, in the 5th Australia-New Zeland Conference on Geomechanics, pp. 93-98, 1988.
  • [43] G. Anagnostou and K. Kovári, “The face stability of slurry-shield-driven tunnels”, Tunnelling and Underground Space Technology, vol. 9, no. 2, pp. 165-174, Apr. 1994, DOI: 10.1016/0886-7798(94)90028-0.
  • [44] D. Simic and G. Gittoes, “Ground behaviour and potential damage to buildings caused by the construction of a large diameter tunnel for the Lisbon Metro”, in Geotechnical Aspects of Underground Construction in Soft Ground, pp. 745-750, 1996.
  • [45] J. Fillibeck and N. Vogt, “Prediction of tunnel-induced settlements in soft ground”, in Geotechnical Aspects of Underground Construction in Soft Ground, vol. 2, no. 1, pp. 735-741, 2012, DOI: 10.1201/b12748.
  • [46] N.H. Glossop, “Soil deformations caused by soft-ground tunnelling”, Durham University, 1978.
  • [47] B.M. New and K.H. Bowers, “Ground movement model validation at the Heathrow Express trail tunnel”, in Tunnelling ’94, pp. 301-329, 1994.
  • [48] R.J. Mair, R.N. Taylor, and A. Bracegirdle, “Subsurface settlement profiles above tunnels in clays”, Géotechnique, vol. 43, no. 2, pp. 315-320, Jun. 1993, DOI: 10.1680/geot.1993.43.2.315.
  • [49] J.N. Shirlaw, et al., “Immediate Settlements Due to Tunnelling for the North East Line”, in Underground Singapore, pp. 76-90, 2001.
  • [50] P. Egger, “Tunnel construction in Stuttgart: Problems of settlements and swelling rock”, in Geotechnical Aspects of Underground Construction in Soft Ground, pp. 263-268, 1996.
  • [51] G.W. Clough, B.P. Sweeney, and R.J. Finno, “Measured Soil Response to EPB Shield Tunneling”, J. Geotech. Eng., vol. 109, no. 2, pp. 131-149, Dec. 1983, DOI: 10.1061/(ASCE)0733-9410(1983)109:2(131).
  • [52] S. Kanayasu, Y. Yamamoto, and Y. Kitahara, “Stability of excavation face in earth pressure balanced shield”, in Underground Construction in Soft Ground, pp. 265-268, 1995.
  • [53] M. Melis et al., “Ground displacements in Madrid soils due to tunnel excavation with earth pressure TBM”, in Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, pp. 1433-1436, 1997.
  • [54] Chang-Yu Ou, R.N. Hwang and Wei-Jung Lai, “Surface settlement during shield tunnelling at CH218 in Taipei”, Canadian Geotechnical Journal, vol. 35, no. 1, pp. 159-168, 1998, DOI: 10.1139/t97-073.
  • [55] Z.C. Moh, D.H. Ju and R.N. Hwang, “Ground movements around tunnels in soft ground”, in Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, pp. 725-730, 1996.
  • [56] H. Netzel, “Building response due to ground movement”, Technische Universiteit Delft, 2009.
  • [57] K.C. Lim, F.H. Lee, and K.K. Phoon, “Numerical fitting attempts of tunnelling-induced ground movement in granitic residual soil”, in Underground Singapore, pp. 196-203, 2003.
  • [58] K.H. Bowers and N. Moss, “Settlement due to tunnelling on the CTRL London tunnels”, in Geotechnical Aspects of Underground Construction in Soft Ground, pp. 203-209, 2006.
  • [59] E.S. Ieronymaki, “Prediction and interpretation of ground movements due to tunnelling in stiff clays and impacts on adjacent structures”, Massachusetts Institute of Technology, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af91d6e8-d252-405b-9f09-0000a2b9b4e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.