PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Observation Method in the Control of Stacker Capacity Under Landslide Hazard – A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents both an application and the purpose of the observation method in the control of stacker capacity. It lists the types of the measured (observed) quantities, which serve as a basis for the observation method. It also describes the procedure of the method and discusses its individual steps. It further provides examples of applying the method in defining the capacity levels of a stacking machine ZGOT-11500, based on the recorded surface and subsurface soil displacement values. The article also offers the increment values and speeds for the individual parameters, which serve as a warning against deterioration of the geotechnical condition of the soil. Knowledge of the relationships between the parameters that describe soil deformation and the required defined stacker capacity may serve as a basis for further research and experiments on the observation method, which may increase the safety of stacking operations. The analysis was based on the results of geotechnical and geodetic measurements, as well as on the operating parameters of the stacker, acquired over a period of 5 months.
Wydawca
Rocznik
Strony
239--251
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • PGE Górnictwo i Energetyka Konwencjonalna S.A., Turów Coal Mine, Górników Turowa 1 St., 59-916 Bogatynia, Poland
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27 St., 50-370 Wrocław, Poland
Bibliografia
  • [1] Abellan, A., Jaboyedoff, M., Oppikofer, T. & Vilaplana, J. (2009). Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Natural Hazards and Earth System Sciences, 9, 365–372. https://doi.org/10.5194/nhess-9-365-2009
  • [2] Alekseev A., Shilova L., Mefedov E. 2021. An approach for automatization of geotechnical monitoring in cryolithzone. IOP Conf. Series: Materials Science and Engineering. 1083 012080.
  • [3] Barla, G., Antolini, F., Bara, M., Mensi, E. & Piovano, G. (2010). Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Engineering Geology, 116, 218–235. https://doi.org/10.1016/j.enggeo.2010.09.004
  • [4] Bednarczyk, Z. (2012). Landslide survey and monitoring methods. Górnictwo Odkrywkowe. (in Polish)
  • [5] Bednarczyk, Z. (2015). Landslide monitoring and on-line early warning methods based on geological engineering investigations in the Beskid Niski and Beskid Średni Mountains. Przegląd Geologiczny, 63(10/3), 1220–1229. (in Polish)
  • [6] Bednarczyk, Z. (2019). Landslide hazards in Polish opencast lignite mines, examples of prevention and possibilities of using remote monitoring to mitigate the risk, Biuletyn Państwowego Instytutu Geologicznego, 477, 1–20. (in Polish)
  • [7] Bergamo, P., Dashwood, B., Uhlemann, S., Swift, R., Chambers, J., Gunn, D. & Donohue, S. (2016). Time-lapse monitoring of climate effects on earthworks using Surface waves. Geophysics, 81(2), 1–15. https://doi.org/10.1190/geo2015-0275.1
  • [8] Bonazzo, F., Esposito, C., Fantini, A., Fiorucci, M., Martino, S., Mazzanti, P., Prestininzi, A., Rivellino, S., Rocca, A. & Scarascia Mugozza, G. (2017). Multisensor Landslide Monitoring as a Challenge For Early Warning: From Process Based to Statistic Based Approaches. Conference: Workshop on World Landslide Forum, 33–39. https://doi.org/10.1007/978-3-319-53487-9_3
  • [9] Borecka, A., Stopkowicz A. & Sekuła, K. (2017). The observational method and the geotechnical monitoring in law to assess subsoil and construction conditions. Przegląd Geologiczny, 65(10/2), 685–691. (in Polish)
  • [10] Burland, J., Jamiolkowski, M. & Viggiani, C. (2009). Leaning Tower of Pisa: Behaviour after Stabilisation Operations. International Journal of Geoengineering Case Histories, Vol. 1, Issue 3, 156–169.
  • [11] Carla, T., Farina, P., Intrieri, E., Botsialas, K., Casagli, N. 2017. On the monitoring and early warning of brittle slope failures in hard rock masses: Examples from and open-pit mine. Engineering Geology, 228, 71–81.
  • [12] Carla, T., Intrieri, E., Farina, P., Casagli N., (2017). A new method to identify impending failure in rock slopes. International Journal of Rock Mechanics and Mining Sciences. 93(C):76–81. DOI:10.1016/j.ijrmms.2017.01.015
  • [13] Carri, A., Valletta, A., Cavalca, E., Savi, R. & Segalini, A. (2021). Advantages of IoT-Based Getochnical Monitoring Systems Integrating Automatic Procedures for Data Acquisition and Elaboration. Sensors, 21(6), 2249. https://doi.org/10.3390/s21062249
  • [14] Chambers, J. E., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham M., Kuras O., Merritt A. & Wragg, J. (2014). 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surface Geophysics, 12(1), 61–72. https://doi.org/10.3997/1873-0604.2013002
  • [15] Dunnicliff, J. (1993). Geotechnical instrumentation for monitoring field performance. John Wiley & Sons.
  • [16] Fernandez-Steeger, T.M., Hu, H., Li, C. & Azzam, R. (2015). Wireless Sensor Networks and Sensor Fusion for Early Warning in Engineering Geology. In: Lollino G. et al. (eds) Engineering Geology for Society and Territory, Vol. 2. Springer, Cham. https://doi.org/10.1007/978-3-319-09057-3_251
  • [17] Gorska, K., Muszyński, Z. & Rybak, J. (2013). Displacement monitoring and sensivity analysis in the observational method. Studia Geotechnica et Mechanica, 35 (3): 25–43. DOI:10.2478/sgem-2013-0028
  • [18] Gunn, D., Chambers, J., Uhlemann, S., Wilkinson, P., Meldrum, P., Dijkstra, T., Haslam, E., Kirkham, M., Wragg, J., Holyoake, S., Hughes, P., Hen-Jones, R. & Glendinning, S., (2015). Moisure monitoring in clay embankment using electrical resistivity tomography. Construction and Building Materials, 92, 82–94. https://doi.org/10.1016/j.conbuildmat.2014.06.007
  • [19] Intrieri E., Gigli N., Nadim F. (2013) Landslide early Warning System: Toolbox and General Concepts. Natural Hazards and Earth System Sciences. 13(1):85–90.
  • [20] Jamiolkowski, M. (2014). Soil mechanics and the observational method: challenges at the Zelazny Most copper tailings disposal facility. Geotechnique, 64(8), 590–619. https://doi.org/10.1680/geot.14.RL.002
  • [21] Jiang, Q. & Feng, X. (2011). Intelligent stability design of large underground hydraulic caverns: Chinese method and practice. Energies, 4(10), 1542–1562. https://doi.org/10.3390/en4101542
  • [22] John A., (2021). Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry – A comprehensive Case Study for Low Movements Rates in the German Mining Area Lugau/Oelsnitz. Mining, 1, 35–58. https://doi.org/10.3390/mining1010004
  • [23] Kurpiewska, I. Wcisło, A., Czarnecki, L. & Jurczyk M. (2013). Classification of geotechnical-threat areas located in open-cast mines as a tool of safety optimization of exploitation based on example of Szczerców Field. Górnictwo Odkrywkowe, R. 54, nr 1.: 5–12. (in Polish)
  • [24] Maddison, S. & Smith, B. (2014). New advances for wireless remote condition monitoring in tunnel deformation and track tilt. In: Railway condition monitoring (RCM 2014), 6th IET Conference on IET 2014. 1–5. DOI: 10.1049/cp.2014.1003
  • [25] Masoudian, M. S., Zevgolis, I. E., Deliveris, A. V., Marshall, A. M., Heron, C. M. & Koukouzas, N. C. (2019). Stability and characterisation of spoil heaps in European surface lignite mines: a state-of-the-art review in light of new data. Environmental Earth Sciences, 78(16), 505. https://doi.org/10.1007/s12665-019-8506-7
  • [26] Mazzanti, P. (2012). Remote monitoring of deformation. An overview of the seven methods described in previous GINs. Geotechnical News, 30(4), 24–29.
  • [27] Mazzanti, P. (2017). Toward transportation asset management: what is the role of geotechnical monitoring? Journal of Civil Structural Healtg Monitoring, 7(1). https://doi.org/10.1007/s13349-017-0249-0
  • [28] Minardo A., Zeni L., Coscetta A., Ester C., Zeni G., Damiano E., De Cristofaro M., Olivares L. 2021. Distributed Optical Fiber Sensor Applications in Geotechnical Monitoring. Sensors, 21, 7514.
  • [29] Patel, D. (2012). The Observational Method, ICE Manual of Geotechnical Engineering, 1489–1501.
  • [30] Peck, R.B. (1969). Advantages and limitations of the Observational Method in applied soil mechanics, Geotechnique, 19 (2):171–187.
  • [31] PN-EN 1997-2:2009 – Eurocode 7: Geotechnical design
  • [32] Ramesh, M. V. (2014). Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Networks, 13, 2–18. https://doi.org/10.1016/j.adhoc.2012.09.002
  • [33] Rybicki, S., Fiszer, J., Flisiak, J., Kowalski, M. & Jakóbczyk, J. (2019). The opinion on the evaluation of the situation in the working area of the Z-48 stacker in relation to increased deformation activity registered by inclinometers GTO-10, GTO-15 and IN-38. (in Polish)
  • [34] Rybicki, S., Fiszer, J., Flisiak, J., Kowalski, M. & Jakóbczyk, J. (2019). Preliminary analysis of geological and engineering conditions in the north-eastern region of the Turów Mine. (in Polish)
  • [35] Rybicki, S., Fiszer, J., Flisiak, J., Kowalski, M. & Jakóbczyk, J. (2019). Scientific supervision over the process of designing and operating the internal dump at PGE GIEK S.A. Turów Lignite Mine. Report for the period from 01.04.2019 to 30.06.2019. (in Polish)
  • [36] Segalini, A., Carri, A., Valletta, A. & Cavalca, E. (2019). Internet-of-Things principles applied to geotechnical monitoring activities: The Internet of Natural Hazards (IoNH) approach. 3rd ICITG – International Conference on Information Technology in Geo-Engineering.
  • [37] Severin, J., Eberhardt, E., Leoni, L., Fortin, S. 2014. Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar. Engineering Geology, 181, 202–211.
  • [38] Shentu, N., Zhang, H., Li, Q. & Zhou, H. (2011). Research on an electromagnetic induction-based deep displacement sensor. IEEE Sensors Journal, 11(6), 1504 – 1515. DOI: 10.1109/JSEN.2010.2086056
  • [39] Shentu, N., Zhang, H., Li, Q., Zhou, H., Tong, R. & Li, X. (2012). A theoretical Model to Predict Both Horizontal and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors. Sensors, 12(1), 233–259. https://doi.org/10.3390/s120100233
  • [40] Silva A., Girao Sotomayor J.M., Torres V.F.N. (2021). Correlations of geotechnical monitoring data in open pit slope back-analysis – A mine case study. Journal of the Southern African Institute of Mining and Metallurgy, 121(10):557–564
  • [41] Spross, J., Johansson, F. (2017). When is the observational method in geotechnical engineering favourable? Structural safety, 66, 17–26. https://doi.org/10.1016/j.strusafe.2017.01.006
  • [42] Stacey, P., Franca, P., Beale, G. 2018. Design implementation and operational consideration. Guidelines for Open Pit Slope Design in Weak Rocks. Vol. 1. Martin, D. and Stacey, P. (eds). CSIRO Publishing, Clayton, Australia.
  • [43] Stark T. & Choi H. (2008). Slope inclinometers for landslides. Landslides, 5(3,: 339–350. https://doi.org/10.1007/s10346-008-0126-3
  • [44] Stiros, S., Vichas, C. & Skourtis, C. (2004). Landslide Monitoring Based on Geodetically Derived Distance Changes. Journal of Surveying Engineering, 130(4), 156–162. DOI:10.1061/(ASCE)0733-9453(2004)130:4(156)
  • [45] Stolecki L., Szczerbiński K. (2022). Practical Use of Measuring the Deflection of Roof Layers in the Assessment of the Stability of Mining Excavations in the Polish Copper Ore Mine “Polkowice-Sieroszowice”. Mining, 2, 13–31. https://doi.org/10.3390/mining2010002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af90f7d5-597e-4bad-853b-2de084491944
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.