Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Investigation of the relationship between changes in hip-joint center and hip loading pre- and post- total hip arthroplasty (THA) is important in evaluating the effect of surgery on motor function. However, few longitudinal studies comparing pre- and post-THA have been reported. The purpose of this study was to determine the effect of changes in hip-joint center pre- and post-THA on the magnitude and direction of hip-joint contact force during the gait cycle, using a patient-specific musculoskeletal model.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Doctoral Department, Course of Health Sciences, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
autor
- Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
autor
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
autor
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
autor
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
autor
- Doctoral Department, Course of Health Sciences, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
autor
- Doctoral Department, Course of Health Sciences, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
autor
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
Bibliografia
- [1] Abolghasemian M., Samiezadeh S., Jafari D., Bougherara H., Gross A.E., Ghazavi M.T., Displacement of the hip center of rotation after arthroplasty of crowe iii and iv dysplasia: A radiological and biomechanical study, J. Arthroplasty, 2013, 28(6), 1031–1035, DOI: 10.1016/j.arth.2012.07.042.
- [2] Andersen M.S., Mellon S.J., Lund M., The effect of including accurate pelvis bony landmarks in a nonlinearly scaled musculoskeletal lower extremity model, XII Int. Symp. 3D Anal. Hum. Mov., 2012:2–4.
- [3] AnyBody Tutorials v7.2.2, AnyBody Technology, Aalborg, Denmark.
- [4] Bergmann G., Bender A., Dymke J., Duda G., Damm P., Standardized loads acting in hip implants, PLoS One, 2016, 11(5), e0155612, DOI: 10.1371/journal.pone.0155612.
- [5] Bergmann G., Deuretzabacher G., Heller M., Graichen F., Rohlmann A., Strauss J., Duda G.N., Hip contact forces and gait patterns from routine activities, J. Biomech., 2001, 34(7), 859–871, DOI: 10.1016/s0021-9290(01)00040-9.
- [6] Carbone V., Fluit R., Pellikaan P., Van der Krogt M.M., Janssen D., Damsgaard M., Vigneron L., Feilkas T., Koopman H.F.J.M., Verdonschot N., TLEM 2.0 - A comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity, J. Biomech., 2015, 48(5), 734–741, DOI: 10.1016/j.jbiomech.2014.12.034.
- [7] Charnley J., Total hip replacement by low-friction arthroplasty, Clin. Orthop. Relat. Res., 1970, 72, 7–21.
- [8] Cohen J., Statistical Power Analysis for the Behavioral Sciences. 2nd ed., Hillsdale, New Jersey, NJ: Lawrence Erlbaum Associates, 1988.
- [9] Damsgaard M., Rasmussen J., Christensen S.T., Surma E., De Zee M., Analysis of musculoskeletal systems in the AnyBody Modeling System, Simul. Model Pract. Theory., 2006, 14(8), 1100–1111, DOI: 10.1016/j.simpat.2006.09.001.
- [10] Davis III R.B., Õunpuu S., Tyburski D., Gage J.R., A gait analysis data collection and reduction technique, Hum. Mov. Sci., 1991, 10(5), 575–587, DOI: 10.1016/0167- 9457(91)90046-Z. [11] Delp S.L., Wixson R.L., Komattu A.V., Kocmond J.H., How superior placement of the joint center in hip arthroplasty affects the abductor muscles, Clin. Orthop. Relat. Res., 1996, 328, 137–146, DOI: 10.1097/00003086-199607000-00022.
- [12] De Pieri E., Lunn D.E., Chapman G.J., Rasmussen K.P., Ferguson S.J., Redmond A.C., Patient characteristics affect hip contact forces during gait, Osteoarthritis Cartilage., 2019, 27(6), 895–905, DOI: 10.1016/j.joca.2019.01.016.
- [13] Doehring T.C., Rubash H.E., Shelley F.J., Schwendeman L.J., Donaldson T.K., Navalgund Y.A., Effect of superior and superolateral relocations of the hip center on hip joint forces: An experimental and analytical analysis, J. Arthroplasty., 1996, 11(6), 693–703, DOI: 10.1016/s0883-5403(96)80008-8.
- [14] Erdemir A., McLean S., Herzog W., Van den Bogert A.J., Model-based estimation of muscle forces exerted during movements, Clin. Biomech., 2007, 22(2), 131–154, DOI: 10.1016/j.clinbiomech.2006.09.005.
- [15] Fischer M.C.M., Eschweiler J., Schick F., Asseln M., Damm P., Radermacher K., Patient specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements, PLoS One, 2018, 13(4), e0195376, DOI: 10.1371/journal.pone.0195376.
- [16] Fukui K., Kaneuji A., Sugimori T., Ichiseki T., Matsumoto T., Hiejima Y., Clinical assessment after total hip arthroplasty using the Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire, J. Orthop., 2015, 12, S31–S36, DOI: 10.1016/j.jor.2015.01.021.
- [17] Ghiasi M.S., Arjmand N., Boroushaki M., Farahmand F., Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms, Med. Biol. Eng. Comput., 2016, 54(2-3), 431–440, DOI: 10.1007/s11517-015-1327-2.
- [18] Giarmatzis G., Jonkers I., Wesseling M., Van Rossom S., Verschueren S., Loading of hip measured by hip contact forces at different speeds of walking and running, J. Bone Miner. Res., 2015, 30(8), 1431–1440, DOI: 10.1002/jbmr.2483.
- [19] Harris M.D., MacWilliams B.A., Bo Foreman K., Peters C.L., Weiss J.A., Anderson A.E., Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models, J. Biomech., 2017, 54, 397 80–87, DOI: 10.1016/j.jbiomech.2017.01.040.
- [20] Heller M.O., Bergmann G., Deuretzbacher G., Claes L., Haas N.P., Duda G.N., Influence of femoral anteversion on proximal femoral loading: measurement and simulation in four patients, Clin. Biomech (Bristol, Avon)., 2001, 16(8), 644–649, DOI: 10.1016/s0268- 0033(01)00053-5.
- [21] Heller M.O., Bergmann G., Deuretzbacher G., Dürselen L., Pohl M., Claes L., Haas N.P., Duda G.N., Musculo-skeletal loading conditions at the hip during walking and stair climbing, J. Biomech., 2001, 34(7), 883-893, DOI: 10.1016/s0021-9290(01)00039-2.
- [22] Horsman K., Dirk M., Anatomical data set measured on a male embalmed specimen. Version 1. 4TU.ResearchData. dataset, 2010, DOI: 10.4121/uuid:6fcb97a5-b036-46d0- 9331- 2ed62c80e8c7.
- [23] Horstmann T., Listringhaus R., Haase G.B., Grau S., Mündermann A., Changes in gait patterns and muscle activity following total hip arthroplasty: A six-month follow-up, Clin. Biomech., 2013, 28, 762–769, DOI: 10.1016/j.clinbiomech.2013.07.001.
- [24] Johnston R.C., Brand R.A., Crowninshield R.D., Reconstruction of the hip. A mathematical approach to determine optimum geometric relationships, J. Bone Joint Surg. Am., 1979, 61(5), 639–652.
- [25] Jones C.A., Voaklander D.C., Johnston D.W.C., Suarez-Almazor M.E., Health related quality of life outcomes after total hip and knee arthroplasties in a community based population, J. Rheumatol., 2000, 27, 1745–1752.
- [26] Karaismailoglu B., Erdogan F., Kaynak G., High Hip Center Reduces the Dynamic Hip Range of Motion and Increases the Hip Load: A Gait Analysis Study in Hip Arthroplasty Patients With Unilateral Developmental Dysplasia, J. Arthroplasty., 2019, 34(6), 1267–1272.e1, DOI: 10.1016/j.arth.2019.02.017.
- [27] Lenaerts G., Bartels W., Gelaude F., Mulier M., Spaepen A., Van der Perre G., Jonkers I., Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait, J. Biomech., 2009, 42(9), 1246–1251, DOI: 10.1016/j.jbiomech.2009.03.037.
- [28] Lenaerts G., Mulier M., Spaepen A., Van der Perre G., Jonkers I., Aberrant pelvis and hip kinematics impair hip loading before and after total hip replacement, Gait Posture., 2009, 30(3), 296-302, DOI: 10.1016/j.gaitpost.2009.05.016.
- [29] Lewis C.L., Sahrmann S.A., Moran D.W., Effect of hip angle on anterior hip joint force during gait, Gait Posture, 2010, 32(4), 603–607, DOI: 10.1016/j.gaitpost.2010.09.001.
- [30] Miki H., Sugano N., Hagio K., Nishii T., Kawakami H., Kakimoto A., Nakamura N., Yoshikawa H., Recovery of walking speed and symmetrical movement of the pelvis and lower extremity joints after unilateral THA, J. Biomech., 2004, 37(4), 443–455, DOI: 433 10.1016/j.jbiomech.2003.09.009.
- [31] Ohfuji S., Jingushi S., Kondo K., Sofue M., Itoman M., Matsumoto T., Hamada Y., Shindo H., Takatori Y., Yamada H., Yasunaga Y., Ito H., Mori S., Owan I., Fujii G., Ohashi H., Takahashi S., Hirota Y., Factors associated with diagnostic stage of hip osteoarthritis due to acetabular dysplasia among Japanese female patients: a cross-sectional study, BMC Musculoskelet Disord., 2016, 17, 320, DOI: 10.1186/s12891-016-1179-4.
- [32] Pasquier G., Ducharne G., Sari Ali E., Giraud F., Mouttet A., Durante E., Total hip arthroplasty offset measurement: Is CT scan the most accurate option?, Orthop. Traumatol. Surg. Res., 2010, 96(4), 367–375, DOI: 10.1016/j.otsr.2010.02.006.
- [33] Petis S., Howard J., Lanting B., Jones I., Birmingham T., Vasarhelyi E., Comparing the anterior, posterior and lateral approach: gait analysis in total hip arthroplasty. Can. J. Surg., 2018, 61(1), 50-57. DOI: 10.1503/cjs.003217.
- [34] Skalshøi O., Iversen C.H., Nielsen D.B., Jacobsen J., Mechlenburg I., Søballe K., Sørensen H., Walking patterns and hip contact forces in patients with hip dysplasia, Gait Posture, 2015, 42(4), 529–33, DOI: 10.1016/j.gaitpost.2015.08.008.
- [35] Skubich J., Piszczatowski S., Model of loadings acting on the femoral bone during gait, J. Biomech., 2019, 87, 54–63, DOI: 10.1016/j.jbiomech.2019.02.018.
- [36] Tanaka R., Shigematsu M., Motooka T., Mawatari M., Hotokebuchi T., Factors influencing the improvement of gait ability after total hip arthroplasty, J. Arthroplasty, 2010, 25(6), 982–985, DOI: 10.1016/j.arth.2009.06.009.
- [37] Vissers M.M., Bussmann J.B., Verhaar J.A.N., Arends L.R., Furlan A.D., Reijman M., Recovery of physical functioning after total hip arthroplasty: Systematic review and meta analysis of the literature, Phys. Ther., 2011, 91, 615–629, DOI: 10.2522/ptj.20100201.
- [38] Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., D'Lima 457 D.D., Cristofolini L., Witte H., Schmid O., Stokes I., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine, J. Biomech., 2002, 35(4), 543–548, DOI: 10.1016/s0021- 9290(01)00222-6.
- [39] Yoo J.I., Cha Y.H., Kim K.J., Kim H.Y., Choy W.S., Hwang S.C., Gait analysis after total hip arthroplasty using direct anterior approach versus anterolateral approach: a systematic review and meta-analysis. BMC Musculoskelet. Disord., 2019, 20(1), 63. DOI: 10.1186/s12891-019-2450-2.
- [40] Yosibash Z., Wille H., Rank E., Stochastic description of the peak hip contact force during walking free and going upstairs, J. Biomech., 2015, 48(6), 1015–1022, DOI: 10.1016/j.jbiomech.2015.01.041.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Brak numeracji stron
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af8f56da-c562-4415-a5f0-db068385c108