PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First evidence of the non extensive character of pre and post seismic deformation of Samos (2020) Mw7.0 earthquake

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The statistical patterns occurring on the threshold of an earthquake, in the transition stage immediately before and after the rupture, still remain unclear. Investigating the dynamical features of surface deformation a few days before and after the earthquake co-seismic rupture are crucial to understand the mechanics of the earthquake process. In the present work, we study surface displacements as estimated using continuous GNSS measurements in the vicinity of the 2020 Mw7.0 Samos (Greece) strong, shallow earthquake. The GNSS time series before and after the Mw7.0 earthquake in SAMO (belonging to METRICA SA HexagonSmartNet commercial network) station demonstrate signifcant surface deformation in the broader epicentral area. We further analyze the surface displacement increments a few days before and after the Samos Mw7.0 earth quake using the non-extensive statistical physics (NESP) framework, which could provide a frame to study the complexity of the earthquake process. The results of the analysis suggest that the statistical distribution of ground displacement increments presents asymptotic power-law behavior that deviates from the standard Gaussian function. Instead, the observed distributions can be described by the q-Gaussian function derived in the NESP framework, for q-values in the range of 1.10–1.15. In addition, the statistical pattern that was obtained from the analysis is further discussed in terms of superstatistics, indicating that the ground displacement increments a few days before and after the Mw7.0 earthquake correspond to a system with high enough degrees of freedom of the order of 13–15. Furthermore, for comparison, a four years record of continuous GNSS measurements was analyzed using NESP. The results support the non-extensive character of displacement increments using a four years period of recordings suggesting long-range temporal correlations.
Czasopismo
Rocznik
Strony
1127--1136
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
  • Section of Geophysics − Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Athens, Greece
  • Institute of Physics of Earth’s Interior and Geohazards, UNESCO, Chair On Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Grete, Greece
  • Section of Geophysics − Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Athens, Greece
  • Institute of Physics of Earth’s Interior and Geohazards, UNESCO, Chair On Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Grete, Greece
  • Section of Geophysics − Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Athens, Greece
  • Institute of Physics of Earth’s Interior and Geohazards, UNESCO, Chair On Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Grete, Greece
  • Section of Geophysics − Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Athens, Greece
  • Institute of Physics of Earth’s Interior and Geohazards, UNESCO, Chair On Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Grete, Greece
Bibliografia
  • 1. Antonopoulos CG, Michas G, Vallianatos F, Bountis T (2014) Evidence of q-exponential statistics in Greek seismicity. Phys A 409:71–77. https://doi.org/10.1016/j.physa.2014.04.042
  • 2. Aristotle University Of Thessaloniki Seismological Network (1981) Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki. Int Feder Digital Seism Netw. https://doi.org/10.7914/SN/HT
  • 3. Beck C (2001) Dynamical foundations of non-extensive statistical mechanics. Phys Rev Lett 87(18):180601. https://doi.org/10.1103/PhysRevLett.87.180601
  • 4. Beck C (2009) Recent developments in superstatistics. Brazilian J. Physics 39:357–363. https://doi.org/10.1590/S0103-97332009000400003
  • 5. Beck C (2006) Superstatistical brownian motion. Prog Theor Phys Suppl 162:29–36. https://doi.org/10.1143/PTPS.162.29
  • 6. Beck C, Cohen EGD (2003) Superstatistics. Phys A 322:267–275. https://doi.org/10.1016/S0378-4371(03)00019-0
  • 7. Bogusz J, Klos A, Figurski M, Kujawa M (2015) Investigation of long-range dependencies in the stochastic part of daily gps solutions. Surv Rev. https://doi.org/10.1179/1752270615Y.0000000022
  • 8. Chatzipetros A, Kiratzi A, Sboras S, Zouros N, Pavlides S (2013) Active faulting in the north eastern aegean Sea Islands. Tectonophysics 597–598:106–122. https://doi.org/10.1016/j.tecto.2012.11.026
  • 9. Dach R, Lutz S, Walser P, Fridez P (eds) (2015b) Bernese GNSS software version 5.2. User manual. Astronomical Institute, University of Bern, Bern Open Publishing. https://doi.org/10.7892/boris.72297
  • 10. Efstathiou A, Tzanis A, Vallianatos F (2015) Evidence of non-extensivity in the evolution of seismicity along the San-Andreas Fault, California, USA: an approach based on tsallis statistical physics. Phys Chem Earth 85–86:56–68. https://doi.org/10.1016/j.pce.2015.02.013
  • 11. Ferraro F, Koutalonis I, Vallianatos F, Agosta F (2019) Application of non-extensive Statistical Physics on the particle size distribution in natural carbonate fault rocks. Tectonophys 771:228219. https://doi.org/10.1016/j.tecto.2019.228219
  • 12. Filatov D, Lyubushin A (2017) Fractal analysis of gps time series for early detection of disastrous seismic events. Phys A 469:718–730. https://doi.org/10.1016/j.physa.2016.11.046
  • 13. Filatov D, Lyubushin A (2019) Precursory analysis of gps time series for seismic hazard assessment. Pure Appl Geophys 177:509–530. https://doi.org/10.1007/s00024-018-2079-3
  • 14. Ganas Α (2020). NOAFAULTS KMZ layer Version 3.0 (2020 update) (Version V3.0). Zenodo. https://doi.org/10.5281/zenodo.4304613
  • 15. Ganas A, Elias P, Briole P, Tsironi V, Valkaniotis S, Escartin J, Karasante I, Efstathiou E (2020) Fault responsible for Samos earthquake identified. Temblor. https://doi.org/10.32858/temblor.134
  • 16. Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean. Int J Earth Sci 99:109–138. https://doi.org/10.1007/s00531-008-0366-4
  • 17. Keilis-Borok VI (1990) The lithosphere of the earth as a nonlinear system with implications for earthquake prediction. Rev Geophys 28(1):19–34. https://doi.org/10.1029/RG028i001p00019
  • 18. Kiratzi A (2002) Stress tensor inversions along the westernmost north anatolian fault zone and its continuation into the North Aegean Sea. Geophys J Int 151(2):360–376. https://doi.org/10.1046/j.1365-246X.2002.01753.x
  • 19. Kiratzi A (2014) Mechanisms of Earthquakes in Aegean. In: Beer M, Kougioumtzoglou IA, Patelli E, Siu-Kui AuI (eds) Encyclopedia of earthquake engineering. Springer, Berlin, pp 1–22
  • 20. Klos A, Bogusz J, Figurski M, Kosek W (2014a) Uncertainties of geodetic velocities from permanent gps observations: the sudeten case study. Acta Geodyn Geomater 11 3(175):201–209. https://doi.org/10.13168/AGG.2014005
  • 21. Klos A, Bogusz J, Figurski M, Kosek W (2014b) Irregular variations in gps time series by probability and noise analysis. Surv Rev. https://doi.org/10.1179/1752270614Y.0000000133
  • 22. Klos A, Gruszczynska M, Bos MS, Boy J, Bogusz J (2019) Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models. In: Braitenberg C, Rossi G (eds) Geodynamics and Earth Tides Observations from Global to Micro Scale. Pageoph Topical Volumes, Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96277-1_18
  • 23. Koutalonis I, Vallianatos F (2017) Evidence of non-extensivity in earth’s ambient noise. Pure Appl Geophys 174:4369–4378. https://doi.org/10.1007/s00024-017-1669-9
  • 24. Langbein J, Murray J, Snyder H (2006) Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, Observed by global positioning system, electronic distance meter, creepmeters, and borehole strainmeters. Bul Seism Soc Am 96(4B):S304–S320. https://doi.org/10.1785/0120050823
  • 25. Lekkas E et al (2020) The October 30, 2020, M 6 9 Samos (Greece) earthquake. Newsl Environ Disaster Cris Manag Strateg 92–93:1–156
  • 26. Michas G, Vallianatos F, Sammonds P (2013) Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece). Nonlinear Proc Geophys 20:713–724. https://doi.org/10.5194/npg-20-713-2013
  • 27. Michas G, Vallianatos F, Sammonds P (2015) Statistical mechanics and scaling of fault population with increasing strain in the Corinth Rift. Earth Planet Sci Lett 431:150–163. https://doi.org/10.1016/j.epsl.2015.09.014
  • 28. Ozacar A (2011). Present day stress pattern of turkey from inversion of updated earthquake focal mechanism catalogue. AGU Fall Meeting Abstracts S21A-2156
  • 29. Papadakis G, Vallianatos F, Sammonds P (2013) Evidence of nonextensive statistical physics behavior of the Hellenic subduction zone seismicity. Tectonophys 608:1037–1048. https://doi.org/10.1016/j.tecto.2013.07.009
  • 30. Papadakis G, Vallianatos F, Sammonds P (2014) A nonextensive statistical physics analysis of the 1995 Kobe, Japan earthquake. Pure Appl Geophys 172:1923–1931. https://doi.org/10.1007/s00024-014-0876-x
  • 31. Papadakis G, Vallianatos F, Sammonds P (2016) Non-extensive statistical physics applied to heat flow and the earthquake frequency distribution in Greece. Phys A 456:135–144. https://doi.org/10.1016/j.physa.2016.03.022
  • 32. Papadimitriou P, Kapetanidis V, Karakonstantis A, Spingos I, Kassaras I, Sakkas V, Kouskouna V, Karatzetzou A, Pavlou K, Kaviris G, Voulgaris N (2020) First results on the M=6 9 Samos earthquake of 30 October 2020. Bull Geol Soc Greece. 56(1):251–279. https://doi.org/10.12681/bgsg.25359
  • 33. Papanikolaou D (1997) The tectonostratigraphic terranes of the Hellenides. Annales Géologiques des Pays Helléniques 37:495–514
  • 34. Reid HF (1910) The mechanics of the earthquake. The California Earthquake of April 18, 1906: report of the state earthquake investigation commission 2:16-18 Carnegie Institution of Washington Publication: Washington, DC, USA
  • 35. Reilinger R, Ergintav S, Bürgmann R, McCluskey S, Lenk O, Barka A, Gurkan O, Hearn E, Feigl KL, Cakmak R et al (2000) Coseismic and postseismic fault slip for the 17 august 1999, M = 7.5, Izmit Turkey Earthquake. Science 289:1519–1524. https://doi.org/10.1126/science.289.5484.1519
  • 36. Reilinger R et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051
  • 37. Ring U, Okrusch M, Will T (2007) Samos Island, Part I: metamorphosed and non metamorphosed nappes, and sedimentary basins. J Virtual Explor 27:5. https://doi.org/10.3809/jvirtex.2007.00180
  • 38. Saltas V, Vallianatos F, Triantis D, Koumoudeli T, Stavrakas I (2019) Non-extensive statistical analysis of acoustic emissions series recorded during the uniaxial compression of brittle rocks. Phys A 528:121498. https://doi.org/10.1016/j.physa.2019.121498
  • 39. Saltas V, Vallianatos F, Triantis D, Stavrakas I (2018) Complexity in laboratory seismology: from electrical and acoustic emissions to fracture. In: Chelidze T, Telesca L, Vallianatos F (eds) Complexity of seismic time series measurement and application. Elsevier, pp 239–273. https://doi.org/10.1016/B978-0-12-813138-1.00008-0
  • 40. Sornette D (2006) Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools Springer Series of Synergetic. Springer, Berlin
  • 41. Telesca L (2010) Analysis of Italian seismicity by using a nonextensive approach. Tectonophys 494:155–162. https://doi.org/10.1016/j.tecto.2010.09.012
  • 42. Telesca L (2011) Tsallis-based nonextensive analysis of the Southern California Seismicity. Entropy 13:1267–1280. https://doi.org/10.3390/e13071267
  • 43. Triantafyllou I, Gogou M, Mavroulis S, Lekkas E, Papadopoulos GA, Thravalos M. The Tsunami Caused by the 30 October 2020 Samos (Aegean Sea) Mw7.0 Earthquake: Hydrodynamic Features, Source Properties and Impact Assessment from Post-Event Field Survey and Video Records. Journal of Marine Science and Engineering. 2021; 9(1):68. https://doi.org/10.3390/jmse9010068
  • 44. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52(1):479–487. https://doi.org/10.1007/BF01016429
  • 45. Tsallis C (2009) Introduction to nonextensive statistical mechanics—approaching a complex world. Springer, New York. https://doi.org/10.1007/978-0-387-85359-8
  • 46. Tserolas V, Mertikas SP, Frantzis X (2013) The western crete geodetic infrastructure: long-range power-law correlations in GPS time series using detrended fluctuation analysis. Adv Space Res 51:1448–1467
  • 47. Tur H et al (2015) Pliocene-Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophys 638:158–176
  • 48. Vallianatos F (2011) A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Phys A 390:1773–1778
  • 49. Vallianatos F, Sammonds P (2010) Is plate tectonics a case of non-extensive thermodynamics? Physica A 389:4989–4993
  • 50. Vallianatos F, Pavlou K (2021) Scaling properties of the Mw7.0 Samos (Greece), 2020 aftershock sequence, Acta Geophysica. https://doi.org/10.1007/s11600-021-00579-5
  • 51. Vallianatos F, Sammonds P (2011) A non-extensive statistics of the fault-population at the valles marineris extensional province, Mars. Tectonophys 509:50–54. https://doi.org/10.1016/j.tecto.2011.06.001
  • 52. Vallianatos F, Sammonds P (2013) Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes. Tectonophys 590:52–58. https://doi.org/10.1016/j.tecto.2013.01.009
  • 53. Vallianatos F, Benson P, Meredith P, Sammonds P (2012) Experimental evidence of a non-extensive statistical physics behavior of fracture in triaxially deformed etna basalt using acoustic emissions. Europhys Lett 97:58002. https://doi.org/10.1209/0295-5075/97/58002
  • 54. Vallianatos F, Michas G, Benson P, Sammonds P (2013) Natural time analysis of critical phenomena: the case of acoustic emissions in triaxially deformed etna basalt. Phys A 392:5172–5178. https://doi.org/10.1016/j.physa.2013.06.051
  • 55. Vallianatos F, Karakostas V, Papadimitriou E (2014) A Non-Extensive statistical physics view in the spatiotemporal properties of the 2003 (Mw62) Lefkada, Ionian Island Greece, aftershock sequence. Pure Appl Geophys 171(7):1343–1534. https://doi.org/10.1007/s00024-013-0706-6
  • 56. Vallianatos F, Michas G, Papadakis G (2016a) A description of seismicity based on non-extensive statistical physics: A review. In: D’Amico S (ed) Earthquakes and their impact on society. Springer Natural Hazards. Springer, Heidelberg, pp 1–41
  • 57. Vallianatos F, Michas G, Papadakis G (2016b) Generalized statistical mechanics approaches to earthquakes and tectonics. Proc R Roc A 472:20160497. https://doi.org/10.1098/rspa.2016.0497
  • 58. Vallianatos F, Michas G, Papadakis G (2018) Nonextensive statistical seismology: an overview In: In: Chelidze T, Vallianatos F, Telesca (eds) Complexity of seismic time series. Elsevier, Amsterdam, pp 25–60
  • 59. Vallianatos F, Michas G (2020) Complexity of fracturing in terms of non-extensive statistical physics: from earthquake faults to arctic sea ice fracturing. Entropy 22(11):1194. https://doi.org/10.3390/e22111194
  • 60. Valverde-Esparza SM, Ramirez-Rojas A, Flores-Marquez EL (2012) Non-extensivity analysis of seismicity within four subduction regions in Mexico. Acta Geophys. 60:833–845. https://doi.org/10.2478/s11600-012-0012-1
  • 61. Vilar CS, Franca GS, Silva R, Alcaniz JS (2007) Nonextensivity in geological faults? Phys A 377:285–290. https://doi.org/10.1016/j.physa.2006.11.017
  • 62. Wang P, Chang Z, Wang H (2015) Lu H (2015) Scale-invariant structure of energy fluctuations in real earthquakes. Eur Phys J B 88:206. https://doi.org/10.1140/epjb/e2017-70702-y
  • 63. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017. https://doi.org/10.1029/96JB03860
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af8c29ce-28fb-4177-92fc-a8dcecb538e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.