PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of bomaplex blue CR-L removal by adsorption using raw and activated pumpkin seed shells

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, removal of colour from wastewaters prepared synthetically using Bomaplex Blue CR-L was investigated using raw and activated pumpkin seed shells by adsorption in a batch system. The effects of stirring speed, adsorbent concentration, dye concentration, temperature and pH on colour removal were investigated, and adsorption capacities of raw and activated pumpkin seed shells were determined. In addition, adsorption kinetics, isotherm coefficients, activation energies and thermodynamic parameters were calculated. The optimal adsorption conditions were determined as pH = 2, stirring speed of 200 rpm, adsorbent concentration of 10 g L–1 and 30 °C. Under the optimal conditions, the maximum removal efficiency of Bomaplex Blue CR-L using raw pumpkin seed shells was 73.01 %. This value rose to 79.71 % after activation processing was applied. Experimental adsorption data show that the adsorption is more suited to the Langmuir adsorption model and works in accordance with the pseudo-first-order kinetics model. As a result of thermodynamic research, ΔH° and ΔS° were 31.515 kJ mol–1 and 109.952 kJ mol–1 K–1 for the raw adsorbent, respectively. For the activated adsorbent, ΔH° and ΔS° were 43.118 kJ mol–1 and 152.237 kJ mol–1 K–1, respectively. The activation energy of adsorption was calculated as 10.918 kJ mol–1 for the raw adsorbent and 9.882 kJ mol–1 for the activated adsorbent.
Rocznik
Strony
199--216
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Department of Environmental Engineering, Atatürk University, 25240, Erzurum, Turkey, phone: +90 442 231 48 11
autor
  • Department of Environmental Engineering, Atatürk University, 25240, Erzurum, Turkey, phone: +90 442 231 48 11
  • Department of Environmental Engineering, Atatürk University, 25240, Erzurum, Turkey, phone: +90 442 231 48 11
autor
  • Department of Emergency Aid and Disaster Management, Bayburt University, 69000, Bayburt, Turkey
  • Department of Environmental Engineering, Iğdır University, Iğdır, Turkey
Bibliografia
  • [1] Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbent: A review. J Chem Eng. 2010;177:70-80. DOI: 10.1016/j.jhazmat.2009.12.047.
  • [2] Banerjee S, Chattopadhyaya MC. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian J Chem. 2017;10:1629-38. DOI: 10.1016/j.arabjc.2013.06.005.
  • [3] Hammood ZA, Chyad TF, Al-Saedi R. Adsorption performance of dyes over zeolite for textile wastewater treatment. Ecol Chem Eng S. 2021;28(3):329-37. DOI: 10.2478/eces-2021-0022.
  • [4] Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6(4):4676-97. DOI: 10.1016/j.jece.2018.06.060.
  • [5] Karaçiray E. Treatment of Dyestuffs with Different Properties from Textile Waste Water in Membrane Bioreactor (MBR) System [Master’s Thesis]. Bilecik: Bilecik Şeyh Edebali University; 2019.
  • [6] Kocadagistan B, Kocadagistan E. The effects of sunflower seed shell modifying process on textile dye adsorption: Kinetic, thermodynamic and equilibrium study. Desalin Water Treatment. 2016;57(7):3168-78. DOI: 10.1080/19443994.2014.980329.
  • [7] Al-Alwani MAM, Norasikin AL, Mohamad A, Kadhum AAH, Mukhlus A. Application of dyes extracted from Alternanthera Dentata leaves and Musa Acuminata Bracts as natural sensitizers for dye-sensitised solar cells. Spectrochim Acta Part A: Molecular Biomolecular Spectroscopy. 2018;192:487-98. DOI: 10.1016/j.saa.2017.11.018.
  • [8] Jumasiah A, Chuah TG, Gimbon J, Choong TSY, Azni I. Adsorption of basic dye onto palm kernel shell activated carbon: Sorption equilibrium and kinetics studies. Desalination. 2005;186(1-3):57-64. DOI: 10.1016/j.desal.2005.05.015.
  • [9] Wang Z, Xue M, Huang K, Liu Z. Textile Dyeing Wastewater Treatment. Advances in Treating Textile Effluent. Rijeka, Croatia: InTech; 2011:91-116.
  • [10] Lian L, Guo L, Guo C. Adsorption of Congo red from aqueous solutions onto Ca-bentonite. J Hazardous Materials. 2009;161(1):126-31. DOI: 10.1016/j.jhazmat.2008.03.063.
  • [11] Adegoke KA, Bello OS. Dye sequestration using agricultural wastes as adsorbents. Water Resources Industry. 2015;12:8-24. DOI: 10.1016/j.wri.2015.09.002.
  • [12] Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling - an overview. RSC Advancers. 2012;2(16):6380-8. DOI: 10.1039/C2RA20340E.
  • [13] Shabaan OA, Jahin HS, Mohamed GG. Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arabian J Chem. 2020;13(3):4797-4810. DOI: 10.1016/j.arabjc.2020.01.010.
  • [14] Al-Degs Y, Khrausheh MAM, Allen SJ, Ahmad MN. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 2000;34(3):927-35. DOI: 10.1016/S0043-1354(99)00200-6.
  • [15] Yener J, Kopac T, Dogu G, Dogu T. Adsorption of basic yellow 28 from aqueous solutions with clinoptilolite and amberlite. J Colloid Interface Sci. 2006;294(2):255-64. DOI: 10.1016/j.jcis.2005.07.040.
  • [16] Yokwana K, Kuvarega AT, Mhlang, SD, Nxumalo EN. Mechanistic aspects for the removal of Congo red dye from aqueous media through adsorption over N-doped graphene oxide nanoadsorbents prepared from graphite flakes and powders. Phys Chem Earth. 2018;107:58-70. DOI: 10.1016/j.pce.2018.08.001.
  • [17] Abd-Elhamid AI, Kamoun EA, El-Shanshory AA, Soliman HMA, Aly HF. Evaluation of graphene oxide-activated carbon as effective composite adsorbent toward the removal of cationic dyes: composite preparation, characterisation and adsorption parameters. J Molecular Liquids. 2019;279:530-9. DOI: 10.1016/j.molliq.2019.01.162.
  • [18] Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi MS, Aldawsari AM. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Molecular Liquids. 2019;293:111442. DOI: 10.1016/j.molliq.2019.111442.
  • [19] Mashkoor F, Nasar A. Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. J Molecular Liquids. 2019;274:315-27. DOI: 10.1016/j.molliq.2018.10.119.
  • [20] Pillai P, Dharaskar S, Shah M, Sultania R. Determination of fluoride removal using silica nano adsorbent modified by rice husk from water. Groundwater Sust Development. 2020;11:100423. DOI: 10.1016/j.gsd.2020.100423.
  • [21] Almasri DA, Rhadfi T, Atieh MA, McKay G, Ahzi S. High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem Eng J. 2018;335:1-12. DOI: 10.1016/j.cej.2017.10.031.
  • [22] Tanhaei B, Ayati A, Sillanpää M. Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: Kinetic, thermodynamic and isothermal studies. Int J Biol Macromolecules. 2019;121:1126-34. DOI: 10.1016/j.ijbiomac.2018.10.137.
  • [23] Nandiyanto ABD. Isotherm adsorption of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds using two-parameter monolayer adsorption models and equations. Moroccan J Chem. 2020;8(3):745-61. DOI: 10.48317/IMIST.PRSM/morjchem-v8i3.21636.
  • [24] Kaur G, Singh N, Rajor A. Adsorption of doxycycline hydrochloride onto powdered activated carbon synthesized from pumpkin seed shell by microwave-assisted pyrolysis. Environ Technol Innovation. 2021;23:101601. DOI: 10.1016/j.eti.2021.101601.
  • [25] Kowalkowska A, Jóźwiak T. Utilization of pumpkin (Cucurbita pepo) seed husks as a low-cost sorbent for removing anionic and cationic dyes from aqueous solutions. Desalin Water Treatment. 2019;171:397-407. DOI: 10.5004/dwt.2019.24761.
  • [26] Okoye AI, Ejikeme PM, Onukwuli OD. Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int J Environ Sci Technol. 2010;7(4):793-800. DOI: 10.1007/BF03326188.
  • [27] Kul S. Removal of Cu(II) from aqueous solutions using modified sewage sludge ash. Int J Environ Sci Technol. 2021;18:3795-806. DOI: 10.1007/s13762-021-03419-7.
  • [28] Kamiński W, Kuśmierek K, Świątkowski A, Tomczak E. Simultaneous adsorption of phenol derivatives from water onto spherical activated carbon. Ecol Chem Eng S. 2020;27(3):403-13. DOI: 10.2478/eces-2020-0026.
  • [29] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Amer Chem Soc. 1918;40:1361-403. DOI: 10.1021/ja02242a004.
  • [30] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Amer Chem Soc. 1938;60(2):309-19. DOI: 10.1021/ja01269a023.
  • [31] Ekmekyapar Kul Z, Nuhoğlu Y, Kul S, Nuhoğlu Ç, Ekmekyapar Torun F. Mechanism of heavy metal uptake by electron paramagnetic resonance and FTIR: enhanced manganese(II) removal onto waste acorn of Quercus ithaburensis. Sep Sci Technol. 2016;51(1):115-25. DOI: 10.1080/01496395.2015.1081943.
  • [32] Agarwal S, Tyagi I, Gupta VK, Ghasemi N, Shahivand M, Ghasemi M. Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. J Molecular Liquids. 2016;208:208-18. DOI: 10.1016/j.molliq.2016.02.073.
  • [33] Nuhoğlu Y, Ekmekyapar Kul Z, Kul S, Nuhoğlu Ç, Ekmekyapar Torun F. Pb(II) biosorption from the aqueous solutions by raw and modified tea factory waste (TFW). Int J Environ Sci Technol. 2021;18:2975-86. DOI: 10.1007/s13762-020-03038-8.
  • [34] Al-Degs YS, El-Barghouthia MI, El-Sheikha AH, Walker GM. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments. 2008;77(1):16-23. DOI: 10.1016/j.dyepig.2007.03.001.
  • [35] Vijayaraghavan K, Yun YS. Biosorption of C.I. Reactive black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pigments. 2008;76:726-32. DOI: 10.1016/j.dyepig.2007.01.013.
  • [36] Renganathan S, Kalpana J, Kumar MD, Velan M. Equilibrium and kinetic studies on the removal of reactive red 2 dye from an aqueous solution using a positively charged functional group of the Nymphaea rubra biosorbent. Clean-Soil Air Water. 2009;37:901-7. DOI: 10.1002/clen.200900133.
  • [37] Ucun H. Equilibrium, thermodynamic and kinetics of reactive black 5 biosorption on loquat (Eriobotrya japonica) seed. Sci Res Essays. 2011;6(19):4113-24. DOI: 10.5897/SRE11.674.
  • [38] Lacerda VS, Lopez-Sotelo JB, Correa-Guimaraes A, Hernandez-Navarro S, Sanchez-Bascones M, Navas-Gracia LM, et al. Rhodamine B removal with activated carbons obtained fromlignocellulosic waste. J Environ Manage. 2015;155:67-76. DOI: 10.1016/j.jenvman.2015.03.007.
  • [39] Jain SN, Gogate PR. Acid Blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus Dulcis. J Environ Chem Eng. 2017;5:3384-94. DOI: 10.1016/j.jece.2017.06.047.
  • [40] Sharma YC, Kaul SN, Weng CH. Adsorptive separation of cadmium from aqueous solutions and wastewaters by riverbed sand. Environ Pollut. 2007;150:251-7. DOI: 10.1016/j.envpol.2007.01.014.
  • [41] Abbas M, Kaddour S, Trari M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Industrial Eng Chem. 2014;20(3):745-51. DOI: 10.1016/j.jiec.2013.06.030.
  • [42] Wu C. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. J Hazardous Materials. 2007;144(1-2):93-100. DOI: 10.1016/j.jhazmat.2006.09.083.
  • [43] Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Molecular Liquids. 2019;273:425-34. DOI: 10.1016/j.molliq.2018.10.048.
  • [44] Jaycock MJ, Parfitt GD. Chemistry of Interface. Onichester: Ellis Horwood Ltd; 1981.
  • [45] Jia CS, Zhang LH, Peng XL, Luo JX, Zhao YL, Liu JY, et al. Prediction of entropy and Gibbs free Energy for nitrogen. Chem Eng Sci. 2019;202:70-4. DOI: 10.1016/j.ces.2019.03.033.
  • [46] Demiral I, Şamdan CA. Preparation and characterization of activated carbon from pumpkin seed shell using H3PO4. Anadolu Univ J Sci Technol A - Appl Sciand Eng. 2016;17(1):125-38. DOI: 10.18038/btda.64281.
  • [47] Mahapatra K, Ramteke DS, Paliwal LJ. Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. J Analytical Appl Pyrolysis. 2012;95:79-86. DOI: 10.1016/j.jaap.2012.01.009.
  • [48] Vijayalakshmi P, Sathya SBV, Thiruvengadaravi KV, Panneerselvam P, Palanichamy M, Sivanesan S. Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from pistachio nut shell. Separation Sci Technol. 2011;46:155-63. DOI: 10.1080/01496395.2010.484006.
  • [49] Capron I, Robert P, Colonna P, Brogly M, Planchot V. Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydrate Polymers. 2007;68(2):249-59. DOI: 10.1016/j.carbpol.2006.12.015.
  • [50] Prahas D, Kartika Y, Indraswati N, Ismadji S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem Eng J. 2008;140:32-42. DOI: 10.1016/j.cej.2007.08.032.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af87a753-18a5-4654-b59a-883f5a072aae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.