PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and numerical analysis on the ultimate bearing capacity of CFRP-confined CFSST stub columns

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To analyze the ultimate bearing capacity of concrete-filled stainless steel tube (CFSST) stub columns confined by carbon fiber reinforced polymer (CFRP) under axial compression, this study conducted theoretical analysis, experimental research, and finite element simulation on CFRP-confined CFSST stub columns under axial compression. Through the theoretical analysis, using the continuous strength method and limit equilibrium method, a theoretical calculation model of the ultimate bearing capacity of the columns was established considering the evident strain hardening effect of stainless steel. In addition, through experimental research, it was found that the failure mode of CFRP-confined CFSST specimens is the typical CFRP fracture and that CFRP can effectively improve the axial compression performance of specimens and restrain the local buckling deformation of the stainless steel tube. Based on experimental research, a finite element model of the CFRP-confined CFSST stub column was established, and a parameter database for the finite element numerical analysis was established. By comparing the experimental results with the aforementioned parameter database, the theoretical model was verified to have a high accuracy in predicting the ultimate bearing capacity of CFRP-confined CFSST stub columns.
Rocznik
Strony
art. no. e26, 2022
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • Institute of Structural Engineering, Xihua University, Chengdu 610039, China
autor
  • Institute of Structural Engineering, Xihua University, Chengdu 610039, China
autor
  • Institute of Structural Engineering, Xihua University, Chengdu 610039, China
autor
  • Institute of Design and Research, Nanchang University, Nanchang 330029, China
autor
  • Institute of Design and Research, Nanchang University, Nanchang 330029, China
Bibliografia
  • 1. Uy B, Tao Z, Han LH. Behaviour of short and slender concrete-filled stainless steel tubular columns. J Constr Steel Res. 2011;67(3):360–78.
  • 2. Han LH, Xu CY, Tao Z. Performance of concrete filled stainless steel tubular (CFSST) columns and joints: summary of recent research. J Constr Steel Res. 2019;152:117–31.
  • 3. Tam VWY, Wang ZB, Tao Z. Behaviour of recycled aggregate concrete filled stainless steel stub columns. Mater Struct. 2014;47(1–2):293–310.
  • 4. Yang YF, Ma GL. Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams. Thin-Walled Struct. 2013;66:62–75.
  • 5. Patel VI, Liang QQ, Hadi MNS. Nonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns. J Constr Steel Res. 2014;101:9–18.
  • 6. Liao YF, Hou C, Zhang WJ, Ren J. Experimental investigation on sea sand concrete-filled stainless steel tubular stub columns. J Constr Steel Res. 2019;155:46–61.
  • 7. Dai P, Yang L, Wang J, Zhou YH. Compressive strength of concrete-filled stainless steel tube stub columns. Eng Struct. 2020;205:110106.
  • 8. AS 51006-2004. Bridge design, part 6: steel and composite construction. Sydney, Australia: Standards Australia; 2004.
  • 9. ANSI, AISC 360-05. Specification for structural steel buildings. Chicago, USA: American Institute of Steel Construction; 2005.
  • 10. DBJ, T 13-51-2010. Technical specification for concrete-filled steel tubular structures. China: The Department of Housing and Urban-Rural Development of Fujian Province; 2010.
  • 11. EN 1994-1-1. Eurocode 4, design of composite steel and concrete structures part, 1.1: general rules and rules for building. London, UK: British Standards Institution; 2004.
  • 12. GB 50936-2014. Technical code for concrete filled steel tubular structures. Beijing, China: Ministry of Housing and Urban-Rural Development of the People’s Republic of China; 2014.
  • 13. ANSI, AISC 360-10. Specification for structural steel buildings. Chicago, USA: American Institute of Steel Construction; 2010.
  • 14. Lam D, Gardner L. Structural design of stainless steel concrete filled columns. J Constr Steel Res. 2008;64(11):1275–82.
  • 15. Xiao Y. Applications of FRP composites in concrete columns. Adv Struct Eng. 2004;7(4):335–43.
  • 16. Tao Z, Han LH, Zhuang JP. Axial loading behavior of cfrp strengthened concrete-filled steel tubular stub columns. Adv Struct Eng. 2007;10(1):37–46.
  • 17. Ding FX, Lu DR, Bai Y, Gong YZ, Yu ZW, Ni M, Li W. Behaviour of CFRP-confined concrete-filled circular steel tube stub columns under axial loading. Thin-Walled Struct. 2018;125:107–18.
  • 18. Lu YY, Li N, Li S. Behavior of FRP-confined concrete-filled steel tube columns. Polymers. 2014;6:1333–49.
  • 19. Wei Y, Wu G, Li G. Performance of circular concrete-filled fiber-reinforced polymer-steel composite tube columns under axial compression. J Reinf Plast Compos. 2014;33(20):1911–28.
  • 20. Park JW, Hong YK, Hong GS, Kim JH, Choi SM. Design formulas of concrete filled circular steel tubes reinforced by carbon fiber reinforced plastic sheets. Procedia Eng. 2011;14:2916–22.
  • 21. Che Y, Wang QL, Shao YB. Compressive performances of the concrete filled circular CFRP-steel tube (C-CFRP-CFST). Adv Steel Constr. 2012;8(4):331–58.
  • 22. Guo Y, Zhang Y. Comparative study of CFRP-confined CFST stub columns under axial compression. Adv Civ Eng. 2018;2018:7109061.
  • 23. Liu JP, Xu TX, Wang YH, Guo Y. Axial behaviour of circular steel tubed concrete stub columns confined by CFRP materials. Constr Build Mater. 2018;168:221–31.
  • 24. Zhang YR, Wei Y, Bai JW, Zhang YX. Stress-strain model of an FRP-confined concrete filled steel tube under axial compression. Thin-Walled Struct. 2019;142:149–59.
  • 25. Zhang YR, Wei Y, Bai JW, Wu G, Dong ZQ. Novel seawater and sea sand concrete filled FRP-carbon steel composite tube column: concept and behaviour. Compos Struct. 2020;246:112421.
  • 26. Wei Y, Bai JW, Zhang YR, Miao KT, Zheng KQ. Compressive performance of high-strength seawater and sea sand concrete-filled circular FRP-steel composite tube columns. Eng Struct. 2021;240:112357.
  • 27. ACI 440R-96. Guide for the design and construction of externally bonded frp systems for strengthening concrete structures. Chicago, USA: American Institute of Steel Construction; 2002.
  • 28. Tang HY, Chen JL, Fan LY, Sun XJ, Peng CM. Experimental investigation of FRP-confined concrete-filled stainless steel tube stub columns under axial compression. Thin-Walled Struct. 2020;146:106483.
  • 29. Sharif AM, Al-Mekhlafi GM, Al-Osta MA. Structural performance of CFRP-strengthened concrete-filled stainless steel tubular short columns. Eng Struct. 2019;183:94–109.
  • 30. Xu Y, Tang HY, Chen JL, Jia YG, Liu RZ. Numerical analysis of CFRP-confined concrete-filled stainless steel tubular stub columns under axial compression. J Build Eng. 2021;37:102130.
  • 31. GB, T228–2010. Metallic materials-tensile testing at ambient temperature. Beijing, China: Architecture Industrial Press of China; 2010.
  • 32. Tang HY, Deng XZ, Lin ZB, Zhou X. Analytical and experimental investigation on bond behavior of CFRP-to-stainless steel interface. Compos Struct. 2019;212:94–105.
  • 33. GB50010-2010. Code for design of concrete structures. Beijing, China: Architecture Industrial Press of China; 2010.
  • 34. ABAQUS. ABAQUS standard user’s manual, version 6.14. Providence, RI (USA): Dassault Systemes SIMULIA Corp; 2014.
  • 35. Rasmussen KJR. Full-range stress–strain curves for stainless steel alloys. J Constr Steel Res. 2003;59(1):47–61.
  • 36. Ashraf M, Gardner L, Nethercot DA. Resistance of stainless steel CHS columns based on cross-section deformation capacity. J Constr Steel Res. 2008;64(9):962–70.
  • 37. Li SQ, Chen JF, Bisby LA, Hu YM, Yu T, Teng JG. Strain efficiency of FRP jackets in FRP-confined concrete-filled circular steel tubes. Int J Struct Stab Dyn. 2012;12(1):75–94.
  • 38. EN 1993-1-4:2006 (2006) Eurocode 3, design of steel structures-part 1–4: general rules-supplementary rules for stainless steel, European Committee for Standardisation (CEN).
  • 39. Cai SH, Jiao ZS. Basic performance and strength calculation of steel tube confined concrete columns. J Build Struct. 1984;5(6):13–29 (in Chinese).
  • 40. Liang M, Wu ZM, Ueda T, Zheng JJ, Akogbe R. Experiment and modeling on axial behavior of carbon fiber reinforced polymer confined concrete cylinders with different sizes. J Reinf Plast Compos. 2012;31(6):389–403.
  • 41. Hua L. Experimental and theoretical study of Reactive Powder Concrete filled steel tube column under compression. Beijing: Beijing Jiaotong University; 2015. (in Chinese).
  • 42. Hany NF, Hantouche EG, Harajli MH. Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity. Eng Struct. 2016;125:1–14.
  • 43. Shi Y, Swait T. C, Soutis, Modelling damage evolution in composite laminates subjected to low velocity impact. Compos Struct. 2012;94(9):2902–13.
  • 44. ACI 318-11. Building code requirements for structural concrete and commentary. Farmington Hills, USA: American Concrete Institute; 2011.
  • 45. Liang SQQ. Fragomeni Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. J Constr Steel Res. 2009;65(12):2186–96.
  • 46. Tao Z, Wang ZB, Yu Q. Finite element modelling of concrete-filled steel stub columns under axial compression. J Constr Steel Res. 2013;89:121–31.
  • 47. Ding FX, Yu ZW, Bai Y, Gong YZ. Elasto-plastic analysis of circular concrete-filled steel tube stub columns. J Constr Steel Res. 2011;67:1567–77.
  • 48. Han LH, Yao GH, Tao Z. Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Struct. 2007;45:24–36.
  • 49. Teng JG, Hu YM, Yu T. Stress-strain model for concrete in FRP-confined steel tubular columns. Eng Struct. 2013;49:156–67.
  • 50. Lam D, Dai XH, Han LH, Ren QX, Li W. Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load. Thin-Walled Struct. 2012;54:94–105.
  • 51. Hu YM, Yu T, Teng JG. FRP-confined circular concrete-filled thin steel tubes under axial compression. J Compos Constr. 2011;15(5):850–60.
  • 52. AS4100-1998. Steel Structures. Sydney, Australia: Standards Australia; 1998.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af832c16-06e6-4d11-bc49-ea0bf171823a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.