PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody komputerowe w inżynierii powłok ochronnych. Część I. Modelowanie procesu natryskiwania plazmowego. Przegląd literatury

Identyfikatory
Warianty tytułu
EN
Computational methods in protective coatings engineering. Part I. Modelling of plasma spraying process. Literature overview
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono proces natryskiwania plazmowego (plasma spraying) stanowiący jedną z podstawowych metod wytwarzania powłok ochronnych, stosowanych w technice lotniczej. Omówiono wybrane zagadnienia modelowania procesu natryskiwania plazmowego w warunkach ciśnienia atmosferycznego (APS - Atmospheric Plasma Spraying) oraz obniżonego (LPPS - Low Pressure Plasma Spraying). Przedstawiono podstawowe modele fizyczne strumienia plazmy, cząstek proszku wprowadzanych do strumienia plazmy oraz mechanizmu osadzania nadtopionych lub całkowicie przetopionych cząstek proszku na powierzchni podłoża. Przebieg procesu natryskiwania plazmowego jest determinowany przez wiele istotnych czynników Wpływających na właściwości użytkowe ukształtowanej powłoki. Poprawa efektywności procesu natryskiwania plazmowego oraz właściwości wytwarzanych powłok wymaga poznania zależności między parametrami procesu i ich oddziaływaniem na budowę powłoki. Na podstawie analizy danych literaturowych w pracy omówiono opracowane dotychczas modele zjawisk fizycznych zachodzących podczas procesu natryskiwania plazmowego.
EN
In the article, the authors described the plasma spraying process which is particularly important in terms of materials science related to the aviation industry. Selected problems related to modelling of the plasma spraying process in the conditions of low (LPPS - Low Pressure Plasma Spraying) and atmospheric (APS - Atmospheric Plasma Spraying) pressure are presented in the paper. The authors described the physical models of the plasma jet, behaviour of the powder particles introduced into the plasma plume and the deposition process ofmolten particles on the substrate surface. The course of the plasma spraying process is determined by numerous significant factors which infiuence the performance of the obtained protective coating. Improvement of the process efficiency and coating properties, requires knowledge of the dependence between the process parameters and their infiuence on the coating formation. The main goal of this article is to present the currently applied models of physical phenomena which occur during the plasma spraying process, on the basis of literature data.
Słowa kluczowe
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 54 poz., rys.
Twórcy
autor
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska
autor
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska
autor
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska
  • Katedra Materiałoznawstwa, Uczelniane Laboratorium Badań Materiałów dla Przemysłu Lotniczego, Politechnika Rzeszowska
Bibliografia
  • [1] The Official Website of Air Force Special Operations Command Web. 21 September 2012. <http://www.afsoc.af.mil/news/story. asp?id=123253735>.
  • [2] Galeno G., Minutillo M., Pema A.: From waste to electricity through integrated plasma gasification/high temperature fuel cell (IPGFC) system. Int. Journal of Hydrogen Energy 36 (2) (2011) 1692÷1701.
  • [3] Chen Z. B., Wang Z. G., Zhu S. J.: Tensile fracture behaviour of thermal barrier coatings on superalloy. Surface and Coatings Technology 205 (15) (2011) 3931÷3938.
  • [4] Fauchais P.: Understanding plasma spraying. Journal of Physics D: Applied Physics 37 (9) (2004) 86÷108.
  • [5] Schneider K. E., Belashchenko V., Dratwinski M., Siegmann S., Zagorski A.: Thermal spraying for power generation components. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2006).
  • [6] Li H. P., Chen X.: Three-dimensional simulation of a plasma jet with transverse particle and carrier gas injection. Thin Solid Films 390 (1-2) (2001) 175÷180.
  • [7] Khelfi D., El-Hadj A. A., Ait-Messaoudene N.: Modelling of a 3D plasma thermal spraying and the effect of the particle injection angle. Revue des Energies Renouvelables (CISM”08), Oum El Bouaghi (2008) 205÷216.
  • [8] Selvan B., Ramachandran K., Pillai B., Subhakar D.: Numerical modelling ofAr-N2 plasma jet impinging on a flat substrate. Journal of Thermal Spray Technology 20 (3) (2011) 534÷548.
  • [9] Xiong H. B., Zheng L. L., Sampath S., Williamson R. L., Fincke J. R.: Three-dimensional simulation of plasma spray: effects of carrier gas flow and particle injection on plasma jet and entrained particle behavior. International Journal of Heat and Mass Transfer 47 (24) (2004) 5189÷5200.
  • [10] Williamson R. L., Fincke J. R., Chang C. H.: A computational examination of the sources of statistical variance in particle parameters during thermal plasma spraying. Plasma Chemistry and Plasma Processing 20 (3) (2000) 299÷324.
  • [11] Mariaux G., Vardelle A.: 3-D time-dependent modelling of the plasma spray process. Part 1: flow modeling. lnternational Journal of Thermal Sciences 44 (4) (2005) 357÷366.
  • [12] Bellan P. M.: Fundamentals of Plasma Physics. Cambridge University Press, Cambridge (2006).
  • [13] Wilden J., Frank H., Bergmann J. P.: Process and microstructure simulation in thermal spraying. Surface and Coatings Technology 201 (6) (2006) 1962÷1968.
  • [14] Drazin P., Riley N.: The Navier-Stokes Equations. A classification of flows and exact solutions. Cambridge University Press, Cambridge (2006).
  • [15] Blazek J.: Computational fluid dynamics: principles and applications. Elsevier Science, Oxford (2001).
  • [16] Liu B., Zhang T., Gawne D. T.: Computational analysis of the influence of process parameters on the flow field of a plasma jet. Surface and Coatings Technology 132 (2-3) (2000) 202÷216.
  • [17] Qunbo F., Lu W., Fuchi W.: 3D simulation of the plasma jet in thermal plasma spraying. Journal of Materials Processing Technology 166 (2) (2005) 224÷229.
  • [18] Li H. P., Pfender E.: Three dimensional modeling of the plasma spray process. Journal of Thermal Spray Technology 16 (2) (2007) 245÷60.
  • [19] Hansen G. A., Chang C. H.: Efficient visualization of a plasma spray simulation. Computers in Physics 12 (1) (1998) 65÷72.
  • [20] CFD Online. Web. 16 Jan. 2012. <http://www.cfd-online.com/>.
  • [21] FLUENT 6.3 User's Guide (Available Online). Web. 9 Feb. 2012. <http:// Ĺ1pce.iitm.ac.in/website/Manuals/Fluent_6_3/Fluent.Inc/fluent6.3/help/ pdf/ug/flug.pdf>.
  • [22] Callen J. D.: Fundamentals of plasma physics. University of Wisconsin, Madison (2003) (available online http://homepages.cae.wisc.edu/-callen/book.html).
  • [23] Matyka M.: Modelowanie numeryczne transportu płynów przez ośrodki porowate. Rozprawa doktorska, Uniwersytet Wrocławski (2008).
  • [24] Dyshlovenko S., Pawlowski L., Pateyron B., Smurov I., Harding J. H.: Modelling of plasma particle interactions and coating growth for plasma spraying of hydroxyapatite. Surface and Coatings Technology 200 (12- 13) (2006) 3757÷3769.
  • [25] Gawne D. T., Liu B., Bao Y., Zhang T.: Modelling of plasma-particle two-phase flow using statistical techniques. Surface and Coatings Technology 191 (2-3) (2005) 242÷254.
  • [26] Zhang W., Wei G. H., Zhang H., Zheng L. L., Welch D. O., Sampath S.: Toward the achievement of substrate melting and controlled solidification in thermal spraying. Plasma Chemistry and Plasma Processing 27 (6) (2007) 717÷736.
  • [27] Kang C. W., Ng H. W., Yu S. C. M.: Comparative study of plasma spray flow fields and particle behavior near to flat inclined substrates. Plasma Chemistry and Plasma Processing 26 (2) (2006) 149÷175.
  • [28] Xiong H. B., Zheng L. L., Li L., Vaidya A.: Melting and oxidation behaviour of in-flight particles in plasma spray process. lnternational Journal of Heat and Mass Transfer 48 (25-26 ) (2005) 5 l2l÷5l33.
  • [29] El-Kaddah N., Mckelliget J., Szekely J.: Heat Transfer and Fluid Flow in Plasma Spraying. Metallurgical Transactions B 15 (1) (1984) 59÷70.
  • [30] Delluc G., Perrin L., Ageorges H., Fauchais P., Pateyron B.: A numerical tool for plasma spraying. Part II: Model of statistic distribution of alumina multi particle powder. 16th lnternational Symposium on Plasma Chemistry (ISPC16), Bari (2003).
  • [31] Delluc G., Ageorges H., Pateyron B., Fauchais P.: Fast modelling of plasma jet and particle behaviours in spray conditions. High Temperature Material and Processes 9 (2) (2005) 211÷226.
  • [32] Kang C. W., Tan J. K., Pan L., Low C. Y., Jaffar A.: Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying. Applied Surface Science 257 (24) (2011) 10363÷10372.
  • [33] Kriba I., Djebaili A.: Numerical study of melted particles crush metallic substrates and the interaction between particles and a plasma beam in the thermal projection process. Applied Surface Science 255 (10) (2009) 5637÷5640.
  • [34] Zagorski A. V., Stadelmaier F.: Full-scale modelling of a thermal spray process. Surface and Coatings Technology 146-147 (2001) 162÷167.
  • [35] Madejski J.: Solidification of droplets on a cold surface. International Journal of Heat and Mass Transfer 19 (9) (1976) 1009÷1013.
  • [36] Zhang H.: Theoretical analysis of spreading and solidification of molten droplet during thermal spray deposition. lnternational Journal of Heat and Mass Transfer 42 (14) (1999) 2499÷2508.
  • [37] Bertagnolli M., Marchese M., Jacucci G., Doltsinis I. St., Noelting S.: Thermomechanical Simulation of the Splashing of Ceramic Droplets on a Rigid Substrate. Journal of Computational Physics 133 (2) (1997) 205÷221.
  • [38] Fauchais P., Vardelle M., Vardelle A., Bianchi L.: Plasma spray: Study of the coating generation. Ceramics lnternational 22 (4) (1996) 295÷303.
  • [39] Bennett T., Poulikakos D.: Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. Journal of Materials Science 28 (4) (1993) 963÷970.
  • [40] Fauchais P.: Formation of plasma sprayed coatings. Journal of Thermal Spray Technology 4 (1) (1995) 3÷6.
  • [41] Montavon G., Sampath S., Bemdt C. C., Herman H., Coddet C.: Effects of vacuum plasma spray processing parameters on splat morphology. Journal of Thermal Spray Technology 4 (1) (1995) 67÷74.
  • [42] Fauchais P., Vardelle A., Vardelle M., Fukumoto M.: Knowledge concerning splat formation: An invited review. Journal of Thermal Spray Technology 13 (3) (2004) 337÷360.
  • [43] Fauchais P., Vardelle A., Dussoubs B.: Quo Vadis Thermal Spraying? Journal of Thermal Spray Technology 10 (1) (2001) 44÷66.
  • [44] Montavon G., Sampath S., Bemdt C. C., Herman H., Coddet C.: Effects of the spray angle on splat morphology during thermal spraying. Surface and Coatings Technology 91 (1-2) (1997) 107÷115.
  • [45] Ravi V., Jog M. A., Manglik R. M.: Effects of interfacial and viscous properties of liquids on drop spread dynamics. Proceedings of the 22nd Annual Meeting of the Institute of Liquid Atomization and Spray Systems (ILASS), Cincinnati (2010).
  • [46] Delplanque J. P., Rangel R. H.: An improved model for droplet solidification on a flat surface. Journal of Materials Science 2 (6) (1997) 1519÷1530.
  • [47] Sivakumar D., Nishiyama H.: Numerical analysis on the impact behavior of molten metal droplets using a modified Splat-quench solidification model. Journal of Heat Transfer 126 (3) (2004) 1014÷1022.
  • [48] Remesh K., Ng H. W., Yu S. C. M.: Influence of process parameters on the deposition footprint in plasma-spray coating. Chemistry and Materials Science 12 (3) (2003) 377÷392.
  • [49] Mostaghimi J., Pasandideh-Fard M., Chandra S.: Dynamics of splat formation in plasma spray coating process. Plasma Chemistry and Plasma Processing 22 (1) (2002) 59÷84.
  • [50] Passandideh-Fard M., Teymourtash A., Kamali E.: On a stochastic model for a thermal spray coating process: prediction of coating thickness and porosity. Proc. of 16th Annual Conference of Mechanical Engineering, Iran (2008).
  • [51] Xue M., Chandra S., Mostaghimi J.: Investigation of splat curling up in thermal spray coatings. Journal of Thermal Spray Technology 15 (4) (2006) 531÷536.
  • [52] Kamnis S., Gu S.: Numerical modelling of droplet impingement. Journal of Physics D: Applied Physics 38 (19) (2005) 3664÷3673.
  • [53] Witula R., Hetmaniok E., Slota D., Zielonka A.: Solution of the two-phase stefan problem by using the Picard's iterative method. Thermal Science 15 (1) (2011) 21÷26.
  • [54] Wang G., Chen Y., Zhang H.: Effects of scanning path on the deposition process in rapid plasma spray tooling. Modeling by homogenization theory. Thin Solid Films 435 (1-2) (2003) 124÷130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af8241b9-bc25-4ae4-9465-1dddb6b8a390
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.