PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Major, recent developmental trends in the field of metal forming are presented in the paper both from experimental and numerical point of view. First, progress made in metal forming processes such as: rolling of long flat products, cross wedge rolling, open die forging, die forging, extrusion, drawing, and stamping are addressed. Then, the study provides infor-mation on the current trends in the application of numerical modeling in the field of metal forming. Presented discussion of the particular issues, is confronted with the authors' own, recently elaborated, solutions.
Słowa kluczowe
Rocznik
Strony
898--941
Opis fizyczny
Bibliogr. 272 poz., fot., rys., tab., wykr.
Twórcy
  • Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw, Poland
autor
  • Lublin University of Technology, 38D Nadbystrzycka St., 20-618 Lublin, Poland
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • Lublin University of Technology, 38D Nadbystrzycka St., 20-618 Lublin, Poland
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • Czestochowa University of Technology, 69 Generala Jana Henryka Dabrowskiego St., 42-201 Czestochowa, Poland
autor
  • Czestochowa University of Technology, 69 Generala Jana Henryka Dabrowskiego St., 42-201 Czestochowa, Poland
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
autor
  • Rzeszow University of Technology, 12 Powstanców Warszawy Av., 35-959 Rzeszów, Poland
autor
  • Lublin University of Technology, 38D Nadbystrzycka St., 20-618 Lublin, Poland
  • Czestochowa University of Technology, 69 Generala Jana Henryka Dabrowskiego St., 42-201 Czestochowa, Poland
autor
  • Lublin University of Technology, 38D Nadbystrzycka St., 20-618 Lublin, Poland
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • INOP – Metal Forming Institute, 14 Jana Pawla II, 61-139 Poznan, Poland
Bibliografia
  • [1] S. Spuzic, R. Narayanan, Z. Kovacic, D.H. Arachchige, K. Abhary, Roll pass design optimization, International Journal of Advanced Manufacturing Technology 91 (2017) 999–1005.
  • [2] A. Stefanik, P. Szota, H. Dyja, Numerical modeling of the microstructure during 50 20 mm flat bars rolling process, Archives of Metallurgy and Materials 54 (3) (2009) 589–596.
  • [3] S.J. Lee, S.M. Kim, D.C. Ko, B.M. Kim, Design of roll profile in shape rolling of an irregular angle bar by the modified butterfly method, International Journal of Precision Engineering and Manufacturing 14 (1) (2013) 93–102.
  • [4] S.J. Lee, K.H. Lee, B.M. Kim, Design of roll profile for lm-guide block in horizontal–vertical shape rolling by 3D-EFA, International Journal of Precision Engineering and Manufacturing 16 (4) (2015) 767–773.
  • [5] K. Saeki, K. Iwano, Progress and prospects of rail for railroads, Nippon Steel & Sumitomo Metal Technical Report 105 (12) (2013) 19–25.
  • [6] S. Zhenyao, W. Zhichao, L. Zhuang, W. Shuai, W. Jiji, Effect of thermomechanical processing on the microstructure and mechanical properties of low carbon steel, in: 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015), 1984–1989.
  • [7] N. Bontcheva, G. Petzov, Total simulation model of the thermo-mechanical process in shape rolling of steel rods, Computational Materials Science 34 (2005) 377–388.
  • [8] H. Dyja, S. Mróz, P. Sygut, M. Sygut, Technologia i modelowanie procesu walcowania pretów okraglych o zawezonej tolerancji wymiarowej, Seria: Monografie 27, Czestochowa, 2012 (in Polish).
  • [9] P. Pawlas, A. Studnicka, W. Soszynski, E. Labuda, G. Siwiec, Analiza wplywu czynników technologicznych na uzyskiwane odchylki wymiarowe pretów stalowych, osiowo symetrycznych, walcowanych na goraco, Prace Instytutu Metalurgii Zelaza 61 (5) (2009) 114–119 (in Polish).
  • [10] S. Mróz, Influence of non-uniform temperature distribution on the metallic charge length on energy and force parameters during groove-rolling, Journal of Iron and Steel Research International 19 (8) (2012) 17–24.
  • [11] R.S. Nalawade, V.R. Marje, G. Balachandran, V. Balasubramanian, Effect of pass schedule and groove design on the metal deformation of 38MnVS6 in the initial passes of hot rolling, Sadhana 41 (1) (2016) 111–124.
  • [12] S. Mróz, Modification of the roll pass design to the bar rolling process with longitudinal band separation, Archives of Metallurgy and Materials 54 (3) (2009) 597–605.
  • [13] D. Strycharska, P. Szota, S. Mróz, Increasing the durability of separating rolls during rolling ribbed bars in the three-strand technology, Archives of Metallurgy and Materials 62 (3) (2017) 1535–1540.
  • [14] F. Lambiase, Prediction of geometrical profile in slit rolling pass, International Journal of Advanced Manufacturing Technology 71 (2014) 1285–1293.
  • [15] D.H. Na, S.H. Cho, Y. Lee, Experimental and numerical studies for the forming groove and separating groove design in slit rolling process, Journal of Mechanical Science and Technology 25 (9) (2011) 2439–2446.
  • [16] S. Mróz, P. Szota, A. Stefanik, H. Dyja, Microstructure numerical modelling change during the round bars rolling, Materials Science Forum 715–716 (2012) 883–888.
  • [17] Y. Wei, L. Gaosheng, C. Qingwu, Effect of a novel gradient temperature rolling process on deformation, microstructure and mechanical properties of ultra-heavy plate, Journal of Materials Processing Technology 217 (2015) 317–326.
  • [18] L. Gaosheng, Y. Wei, C. Qingwu, Z. He, Effect of gradient temperature rolling (GTR) and cooling on microstructure and properties of E40-grade heavy plate, Archives of Civil and Mechanical Engineering 17 (2017) 121–131.
  • [19] A. Kawalek, H. Dyja, S. Mroz, M. Knapinski, Effect of plate asymmetric rolling parameters on the change of the total unit pressure of roll, Metalurgija 50 (3) (2011) 163–166.
  • [20] J. Liu, R. Kawalla, Influence of asymmetric hot rolling on microstructure and rolling force with austenitic steel, Transactions of Nonferrous Metals Society of China 22 (2012) 504–511.
  • [21] A. Wierzba, S. Mróz, P. Szota, A. Stefanik, R. Mola, The influence of the asymmetric ARB process on the properties of Al–Mg–Al multi-layer sheets, Archives of Metallurgy and Materials 60 (4) (2015) 2821–2825.
  • [22] A. Abvabi, Effect of Residual Stresses in Roll Forming Process of Metal Sheets, (Ph.D. Thesis), Deakin University, 2014.
  • [23] D. Asefi, H. Monajatizadeh, A. Ansaripour, A. Salimi, Investigation of the effect of skin-pass rolling on the formability of low-carbon steel sheets, Materials and Technology 47 (4) (2013) 461–466.
  • [24] K. Neh, M. Ullmanna, R. Kawalla, Twin-roll-casting and hot rolling of magnesium alloy WE43, Procedia Engineering 81 (2014) 1553–1558.
  • [25] F. Berge, L. Krügerb, M. Ullmann, C. Krbetschek, R. Kawalla, Anisotropy of the mechanical properties of twin-roll cast, rolled and heat treated AZ31 as a function of temperature and strain rate, Materials Today: Proceedings 2S (2015) 233– 241.
  • [26] C.P. Reip, W. Henning, J. Kempken, S. Kraemer, Challenges and solutions of compact strip production, Stahl und Eisen 29 (2006) 66–70.
  • [27] A.E. Tekkaya, J.M. Allwood, P.F. Bariani, S. Bruschi, J. Cao, S. Gramlich, P. Groche, G. Hirt, T. Ishikawa, M. Merklein, W. Misiolek, M. Pietrzyk, R. Shivpuri, J. Yanagimoto, Metal forming beyond shaping: predicting and setting product properties, CIRP Annals – Manufacturing Technology 64 (2015) 629–653.
  • [28] J. Kitowski, L. Rauch, M. Pietrzyk, A. Perlade, R. Jacolot, V. Diegelmann, M. Neuer, I. Gutierrez, P. Uranga, N. Isasti, G. Larzabal, R. Kuziak, U. Diekmann, Virtual Strip Rolling Mill VirtRoll, European Commission Research Programme of the Research Fund for Coal and Steel, Technical Group TGS 4, Final Report from the Project RFSR-CT-2013-00007, 2017.
  • [29] K. Bzowski, J. Kitowski, R. Kuziak, P. Uranga, I. Gutierrez, R. Jacolot, L. Rauch, M. Pietrzyk, Development of the material database for the VirtRoll computer system dedicated to design of an optimal hot strip rolling technology, Computer Methods in Materials Science 17 (2017) 225–246.
  • [30] M. Pietrzyk, L. Madej, L. Rauch, D. Szeliga, Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations, Elsevier, Amsterdam, 2015.
  • [31] Z. Jia, J. Zhou, J. Ji, New type of groove used to improve friction in roll forging, Journal of Central South University 21 (2014) 493–499.
  • [32] J. Zhou, Z. Jia, H. Liu, M. Wang, A study on simulation of deformation during roll-forging process using system of special shaped and hat groove, Reviews on Advanced Materials Science 33 (2013) 354–359.
  • [33] W. Zhuang, L. Hua, X. Wang, Y. Liu, X. Han, L. Dong, Numerical and experimental investigation of roll-forging of automotive front axle beam, International Journal of Advanced Manufacturing Technology 79 (2015) 1761–1777.
  • [34] W. Zhuang, L. Hua, X. Wang, Y. Liu, L. Dong, H. Dai, The influences of process parameters on the preliminary roll-forging process of the AISI-1045 automobile front axle beam, Journal of Mechanical Science and Technology 30 (2) (2016) 837–846.
  • [35] Precision Roll Forging for Automotive Front Axles and Crankshafts—Die Forging Line, http://www.brimet.ac.cn/ en/productinfo.aspx?cid=453&id=23&i=5.
  • [36] J. Tomczak, Z. Pater, T. Bulzak, Thermo-mechanical analysis of a lever preform forming from magnesium alloy AZ31, Archives of Metallurgy and Materials 57 (4) (2012) 1211–1218.
  • [37] T. Bulzak, J. Tomczak, Z. Pater, Theoretical and experimental research on forge rolling process of preforms from magnesium alloy AZ31, Archives of Metallurgy and Materials 60 (1) (2015) 437–443.
  • [38] M. Sedighi, M. Mahmodi, An approach to simulate cold roll-forging of turbo-engine thin compressor blade, Aircraft Engineering and Aerospace Technology: An International Journal 81 (3) (2009) 191–198.
  • [39] Z. Pater, Development of Cross Wedge Rolling Theory and Technology. ‘‘Special edition: Metal Forming 2010’’, Steel Research International, 2010, pp. 25–32.
  • [40] J. Zhou, Z. Yu, Q. Zeng, Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft, The International Journal of Advanced Manufacturing Technology 72 (2014) 1559–1566.
  • [41] J. Zhou, C. Xiao, Y. Yu, Z. Jia, Influence of tool parameters on central deformation in two-wedge two-roll cross-wedge rolling, Advanced Materials Research 486 (2012) 478–483.
  • [42] X. Wang, K. Zhang, J. Liu, Z. Hu, The effect and experimental research of forming angle on internal defect of valve roughcast formed by single cross wedge rolling, Advanced Materials Research 230–232 (2011) 389–394.
  • [43] M.F. Novella, A. Ghiotti, S. Bruschi, P.F. Bariani, Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars, Journal of Materials Processing Technology 222 (2015) 259–267.
  • [44] G. Liu, Z. Jiang, Y. Bian, G. Ren, Ch. Xu, Influence of tool wear on center defects of the workpiece during cross wedge rolling process, Advanced Materials Research 154–155 (2011) 1779–1782.
  • [45] W. Peng, K. Zhang, Theoretical research of the axial force about cross wedge rolling, Key Engineering Materials 433 (2010) 27–32.
  • [46] X. Shu, B. Sun, M. Xiao, Influence regularities of axial force of cross wedge rolling symmetric shaft-parts about technical parameters, Advanced Materials Research 314–316 (2011) 589–593.
  • [47] P. Qui, H. Xiao, M. Li, Effect of non-uniform temperature field on piece rolled by three-roll cross wedge rolling, Applied Mechanics and Materials 16–19 (2009) 456–461.
  • [48] J. Ma, C. Yang, Z. Zheng, K. Zhang, W. Ma, Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling, International Journal of Minerals, Metallurgy and Materials 23 (11) (2016) 1302–1314.
  • [49] X. Xing, X. Shu, Finite element analysis of stress and strain in two-wedge cross wedge rolling step-shaft part, Materials Science Forum 575–578 (2008) 255–260.
  • [50] B. Hu, X. Shu, P. Yu, W. Peng, The strain analysis at the broadening stage of the hollow railway axle by multi-wedge cross wedge rolling, Applied Mechanics and Materials 494– 495 (2014) 457–460.
  • [51] Z. Zheng, B. Wang, Z. Hu, Study on roller profile for cam forming by cross wedge rolling, Applied Mechanics and Materials 217–219 (2012) 1713–1718.
  • [52] W. Ma, B. Wang, J. Zhou, Q. Li, Analysis of square billet cross wedge rolling process using finite element method, Applied Mechanics and Materials 271–272 (2013) 406–411.
  • [53] Z. Pater, A FEM analysis of cross-wedge rolling of toothed shafts, Acta Mechanica Slovaca 15 (2) (2011) 50–58.
  • [54] H. Yan, L. Wang, Y. Liu, G. Li, J. Liu, Z. Hu, Effect of thread helix angle on the axial metal flow of cross wedge rolling thread shaft, Applied Mechanics and Materials 440 (2014) 177–181.
  • [55] Z. Pater, K. Lukasik, V.I. Stebliuk, Numerical simulations of screw spike, worm and gear rolling. Vistnik Nacional'nogo technicnogo universitetu Ukraini ‘‘Kijvskij politechnicnij institut’’, Serija Maszinoobuduvanija (58) (2010) 289–294.
  • [56] H. Ji, J. Liu, B. Wang, Z. Zheng, J. Huang, Z. Hu, Cross-wedge rolling of a 4Cr9si2 hollow valve: explorative experiment and finite element simulation, The International Journal of Advanced Manufacturing Technology 77 (2015) 15–26.
  • [57] C. Yang, J. Ma, Z. Hu, Analysis and design of cross wedge rolling hollow axle sleeve with mandrel, Journal of Materials Processing Technology 239 (2017) 346–358.
  • [58] C. Yang, Z. Ku, Research on the ovality of hollow shafts in cross wedge rolling with mandrel, The International Journal of Advanced Manufacturing Technology 83 (2016) 67–76.
  • [59] Z. Pater, Multi-wedge cross rolling of balls, Journal of Iron and Steel Research International 20 (10) (2013) 46–50.
  • [60] Z. Pater, New methods of steel ball rolling, International Journal of Materials & Product Technology 47 (1/2/3/4) (2013) 12–22.
  • [61] Z. Pater, A. Gontarz, A. Tofil, Analysis of the cross-wedge rolling process of toothed shafts made from 2618 aluminium alloy, Journal of Shanghai Jiaotong University (Science) 16 (2) (2011) 162–166.
  • [62] R. Neugebauer, B. Lorenz, J. Steger, D. Holstein, Cross wedge rolling in preforming titanium alloy aero engine vanes, Steel Research International 79 (1) (2008) 375–381.
  • [63] G. Kozhevnikova, Cross-Wedge Rolling, Ed. Belorusskaya nauka, Minsk, 2012.
  • [64] Z. Hu, B. Wang, Z. Zheng, Research and industrialization of near-net rolling technology used in shaft parts, Frontiers of Mechanical Engineering (2018), https://doi.org/10.1007/ s11465-018-0480-3.
  • [65] Q. Cao, L. Hua, D. Qian, Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls, Journal of Central South University 22 (2015) 1175–1183.
  • [66] X. Shi, B. Wang, Z. Li, Optimization of pass parameters on two-grooves skew rolling for Al ball, Key Engineering Materials 419–420 (2010) 313–316.
  • [67] Z. Pater, J. Tomczak, J. Bartnicki, M.R. Lovell, P.L. Menezes, Experimental and numerical analysis of helical-wedge rolling process for producing steel balls, International Journal of Machine Tools & Manufacture 67 (2013) 1–7.
  • [68] Z. Pater, Analysis of the helical-wedge rolling process for producing a workholding bolt, Metalurgija 53 (4) (2014) 653– 656.
  • [69] Z. Pater, Analysis of the helical-wedge rolling process for producing a long stepped shaft, Key Engineering Materials 622–623 (2014) 893–989.
  • [70] P. Skubisz, J. Sinczak, A. Lukaszek-Solek, S. Bednarek, Kucie swobodne i pólswobodne, ARBOR FP, Kraków, 2011.
  • [71] E. Nisbet, Steel Forgings: Design, Production, Selection, Testing and Application, ASTM Stock, Bridgeport, NJ, 2005.
  • [72] www.euroforge.org (05.2018).
  • [73] W. Hoffelner, Materials for Nuclear Plants, Springer-Verlag, London Limited, 2013.
  • [74] J. Kowalski, J. Pstrus, S. Pawlak, M. Kostrzewa, R. Martynowski, W. Wolczynski, Influence of the reforging degree on the annihilation of the segregation defects in the massive forging ingots, Archives of Metallurgy and Materials 56 (4) (2011) 1029–1043.
  • [75] B. Zdonek, I. Szypula, J. Gazdowicz, P. Skupien, S. Binek, P. Dudkiewicz, M. Karbowniczek, A. Pytel, Innowacyjne rozwiązania w technologii produkcji odkuwek o dużej masie ze stali ultra czystych dla przemysłu energetycznego i naftowego do eksploatacji w ekstremalnych warunkach, Prace IMZ 2 (2015) 29–37.
  • [76] M. Saby, P.-O. Bouchard, M. Bernacki, Void closure criteria for hot metal forming: a review, Journal of Manufacturing Processes 19 (2015) 239–250.
  • [77] H. Kakimoto, T. Arikawa, Y. Takahashi, T. Tanaka, Y. Imaida, Development of forging process design to close internal voids, Procedia Engineering 81 (2014) 137–142.
  • [78] H. Huang, S. Xu, W. Wang, F. Du, Research on voids deformation welding condition for manufacturing of heavy forgings, Journal of Shanghai Jiaotong University (Science) 16 (2) (2011) 203–208.
  • [79] M.S. Chen, Y.C. Lin, Numerical simulation and experimental verification of void evolution inside large forgings during hot working, International Journal of Plasticity 49 (2013) 53–70.
  • [80] G. Banaszek, A. Stefanik, Theoretical and laboratory modelling of the closure of metallurgical defects during forming of a forging, Journal of Materials Processing Technology 177 (2006) 238–242.
  • [81] X. Zhang, Z. Cui, Theoretical study of void closure in nonlinear plastic materials, Applied Mathematics and Mechanics – English Edition 30 (5) (2009) 631–642.
  • [82] X. Zhang, Z. Cui, W. Chen, Y. Li, A criterion for void closure in large ingots during hot forging, Journal of Materials Processing Technology 209 (4) (2009) 1950–1959.
  • [83] Y.S. Lee, S.U. Lee, C.J. Van Tyne, B.D. Joo, Y.H. Moon, Internal void closure during the forging of large cast ingots using a simulation approach, Journal of Materials Processing Technology 211 (2011) 1136–1145.
  • [84] P. Skubisz, A. Lukaszek-Solek, J. Kowalski, J. Sinczak, Closing the internal discontinuities of ingots in open die forging, Steel Research International (Special Issue 1) (2008) 555–562.
  • [85] L. Zhang, W. Shen, Ch. Zhang, Q. Xu, Y. Cui, Numerical simulation of different types of voids closure in large continuous casting billet during multi-pass stretching process, Procedia Engineering 207 (2017) 532–537.
  • [86] P. Skubisz, L. Lisiecki, J. Sinczak, Studies of the quality and cost effectiveness of a novel concept of open-die forged powerplant main shaft, Metalurgija 54 (2015) 339–342.
  • [87] M.L. Blackmore, N. Bagshaw, M.N.R. Al-Husseini, K. Muszka, B.P. Wynne, J. Talamantes-Silva, Qualification of hollow ingot technology in safety critical forgings and fabrications, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 389–398.
  • [88] J. Sinczak, L. Lisiecki, P. Skubisz, Technologia kucia walu z otworem dla silowni wiatrowej z wsadu dziurowanego, Hutnik Wiadomosci Hutnicze 4 (2013) 254–261.
  • [89] A. Paderni, P. Bettoni, H. Scholz, U. Biebricher, H. Franz, Comparison Between Traditional and Electro Slag Remelted Steel Ingots Used in Power Generation, in: Proc. 19th International Forgemasters Meeting, Tokyo, Japan, (2014) 95–100.
  • [90] Industry 4.0: Building the Digital Enterprise, PwC, 2016.
  • [91] M. Liewald, C. Karadogan, A. Felde, Development and integration of digital technologies in forging processes, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 570–579.
  • [92] M. Kishinoue, T. Kuwaki, T. Sato, K. Tsuruhisa, Installation of advanced 500 tons forging furnaces, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 609–617.
  • [93] J. Dzik, W. Tracey, P. McLaughlin, Recent advances of furnace and regenerative combustion system design in large open die forging applications, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 618–626.
  • [94] N. Yoshimoto, New development of global environment- friendly large reheating furnace, in: Proc. 19th International Forgemasters Meeting, Tokyo, Japan, (2014) 597–602.
  • [95] E. Tschapowetz, J. Geidies, K. Hornig, Use of regenerative burner systems in batch-wise furnace operation, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 282–291.
  • [96] F. Jamet, A. Prosswimmer, Power on demand for forging presses, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 771–779.
  • [97] www.world-nuclear.org (05.2018).
  • [98] J.H. Oh, I.S. Lee, R. Dango, S. Krusch, M. Orthey, South Korea's strongest open die forging plant from planning to commissioning, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 968–977.
  • [99] P. Nieschwietz, F. Knauf, S. Szczepanik, Kowarka o napedzie hydraulicznym i jej zastosowanie, Obróbka Plastyczna Metali XXVII 4 (2016) 341–352.
  • [100] S.G. Glushenkova, K.A. Polozhentsev, A.I. Dmitriev, I.A. Gorev, P.J. Nieschwietz, Development of a technology for a hydraulic radial forging machine at the Elektrostal Metallurgical Plant, Metallurgist 61 (5–6) (2017).
  • [101] S. Horstmann, Modern form of handling open-die forged parts, in: Proc. 19th International Forgemasters Meeting, Tokyo, Japan, (2014) 587–591.
  • [102] M. Wolfgarten, P. Hibbe, G. Hirt, Process integrated production of complex workpieces in open-die forging, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 580–589.
  • [103] L. Jingguo, D. Tianzeng, S. Lei, Quality control in manufacturing process of large forgings, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 590–596.
  • [104] C. Chesman, S. Al-Bermani, Z. Xu, J. Talamantes-Silva, P. Davies, Laser metrology of large scale forgings and castings, in: Proc. 20th International Forgemasters Meeting, Graz, Austria, (2017) 427–436.
  • [105] Advanced Methods in Supporting of Manufacturing Processes, Promotional Materials of CREATEC Sp. z o.o.
  • [106] Dimensional Control During Forging: Innovative 3D Laser Measuring System, Promotional Materials of MERMEC SPA.
  • [107] Promotional Materials of Quantor Form Ltd.
  • [108] O. Jaouen, F. Costes, P. Lasne, M. Barbelet, From hollow ingot to shell with a powerful numerical simulation software tool, in: Proc. 19th International Forgemasters Meeting, Tokyo, Japan, (2014) 513–518.
  • [109] Some current development trends in metal forming technology, Journal of Material Processing Technology 60 (1996) 1–9.
  • [110] K.J. Barnett, Research initiatives for the forging industry, Journal of Material Processing Technology 98 (2000) 162–164.
  • [111] Klaus Vollrath, Aarwangen, Forging: manufacturers in close proximity to customers provide several advantages, Schmiede Journal (1) (2015).
  • [112] http://www.euroforge.org/statistics/production-figures. html.
  • [113] M. Milutinovic, D. Vilotic, D. Movrin, Precision forging – tool concept and process design, Journal for Technology of Plasticity 33 (1–2) (2008).
  • [114] Podstawy procesów przeróbki plastycznej, Praca zbiorowa pod redakcja J. Sinczaka, Wydawnictwo Naukowe AKAPIT, Kraków, 2010.
  • [115] E. Doege, R. Bohnsack, Close die technologies for hot forging, Journal of Materials Processing Technology 98 (2000).
  • [116] H. Yoshimura, K. Tanaka, Precision forging of aluminum and steel, Journal of Materials Processing Technology 98 (2000) 196–204.
  • [117] Z. Gronostajski, M. Hawryluk, The main aspects of precision forging, Archives of Civil and Mechanical Engineering VIII (2) (2008).
  • [118] T. Nakamura, K. Osakada, Research and development of precision forging in japan, in: Conf. International Cold Forging Group, 2005.
  • [119] Hirschvogel Automotive Group.
  • [120] R. Neugebauer, M. Kolbe, R. Glass, New warm forming processes to produce hollow shafts, Journal of Materials Processing Technology 119 (2001) 277–282.
  • [121] www.schulergroup.com/major/us/technologien/produkte/ anlagen_halbwarmumformung_mehrstufenpressen_ exzenterantrieb/Technik/index.html.
  • [122] P. Kettner, F. Schmieder, Manufacturing of hollow transmission shafts via bulk metal forging, Journal of Material Processing Technology 71 (1997).
  • [123] R. Neugebauer, M. Kolbe, R. Glass, New warm forming processes to produce hollow shaft, Journal of Material Processing Technology 117 (2001).
  • [124] Z. Pater, Podstawy teoretyczne i badania eksperymentalne procesu walcowania klinowo – rolkowego, Instytut Obróbki Plastycznej, Poznan, 2007.
  • [125] ASM Metal Handbook — Volume 14. Forming and Forging, ASM International, 1996.
  • [126] http://www.world-aluminium.org/statistics/ alumina-production/#histogram (April 2018).
  • [127] Aluminum Content in Cars – Summary Report for European Aluminium Association, 2016, https://www. european-aluminium.eu/media/1721/ european-aluminium-ducker-study-summary-report_sept. pdf (April 2018).
  • [128] M. Tocci, A. Pola, G.M. La Vecchia, M. Modigell, Characterization of a new aluminium alloy for the production of wheels by hybrid aluminium forging, Procedia Engineering 109 (2015) 303–311.
  • [129] B. Plonka, A. Klyszewski, J. Senderski, M. Lech-Grega, Application of Al alloys, in the form of cast billet, as stock material for the die forging in automotive industry, Archives of Civil and Mechanical Engineering 7 (2) (2008) 149–156.
  • [130] Y. Birol, E. Gokcil, M.A. Guvenc, S. Akdi, Processing of high strength EN AW 6082 forgings without a solution heat treatment, Materials Science and Engineering A 674 (2016) 25–32.
  • [131] R.J.H. Wanhill, G.H. Bray, in: N.E. Prasad, A. Gokhale, R.J.H. Wanhill (Eds.), Aluminum–Lithium Alloys: Processing, Properties, and Applications, Elsevier, Amsterdam, 2014.
  • [132] A. Gontarz, Z. Pater, K. Drozdowski, Forging on hammer of rim forging from titanium alloy Ti6Al4V, Archives of Metallurgy and Materials 57 (4) (2012) 1239–1246.
  • [133] M. Meng, X.G. Fan, P.F. Gao, L.G. Guo, M. Zhan, K. Wei, Microstructure evolution in near isothermal forming of titanium alloy component, Procedia Engineering 207 (2017) 2173–2178.
  • [134] X. Yanga, H. Guoa, Z. Zhaoa, Y. Ninga, S. Yuanb, S. Xinc, Quantitative analysis of the effect of deformation temperature on microstructure evolution and mechanical property of isothermally forged BT25y titanium alloy, Procedia Engineering 207 (2017) 2167–2172.
  • [135] P. Janschek, Wrought TiAl blades, Materials Today: Proceedings 2S (2015) S92–S97.
  • [136] N.S. Weston, M. Jackson, FAST-forge – a new cost-effective hybrid processing route for consolidating titanium powder into near net shape forged components, Journal of Materials Processing Technology 243 (2017) 335–346.
  • [137] M. Wojtaszek, T. Sleboda, Design and verification of thermomechanical parameters of P/M Ti6Al4V alloy forging, Journal of Alloys and Compounds 615 (2014) S546– S550.
  • [138] M. Motyka, J. Sieniawski, W. Ziaja, Microstructural aspects of superplasticity in Ti–6Al–4V alloy, Materials Science & Engineering A 599 (2014) 57–63.
  • [139] V. Imayev, R. Gaisin, A. Rudskoy, T. Nazarova, R. Shaimardanov, R. Imayev, Extraordinary superplastic properties of hot worked Ti–45Al–8Nb–0.2C alloy, Journal of Alloys and Compounds 663 (2016) 217–224.
  • [140] A. Luo, in: M. Pekguleryuz, K. Kainer, A. Kaya (Eds.), Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing Limited, Cambridge, 2013.
  • [141] United States Automotive Materials Partnership: Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium, 2006.
  • [142] A. Gontarz, Kucie matrycowe stopów magnezu, Wydawnictwo Naukowe Instytutu Technologii Eksploatacji – PIB, Radom, 2016.
  • [143] A. Dziubinska, A. Gontarz, Kucie odkuwek użebrowanych ze stopów magnezu, Wydawnictwo Politechniki Lubelskiej, Lublin, 2016.
  • [144] Q. Wang, Z. Zhang, X. Zhang, G. Li, New extrusion process of Mg alloy automobile wheels, Transactions of Nonferrous Metals Society of China 20 (2010) 599–603.
  • [145] H. He, S. Huang, Y. Yia, W. Guo, Simulation and experimental research on isothermal forging with semi-closed die and multi-stage-change speed of large AZ80 magnesium alloy support beam, Journal of Materials Processing Technology 246 (2017) 198–204.
  • [146] A. Gontarz, Theoretical and experimental research of hammer forging process of RIM from AZ31 magnesium alloy, Metalurgija 53 (4) (2014) 645–648.
  • [147] K. Drozdowski, Badania procesów kucia matrycowego stopów magnezu na prasach srubowych i mlotach kuzniczych, Praca doktorska, Politechnika Lubelska, Lublin, 2015 (praca niepublikowana).
  • [148] S. Kandalam, R.K. Sabat, N. Bibhanshu, G.S. Avadhani, S. Kumar, S. Suwas, Superplasticity in high temperature magnesium alloy WE43, Materials Science & Engineering A 687 (2017) 85–92.
  • [149] H. Miuraa, W. Nakamurab, M. Kobayashi, Room-temperature multi-directional forging of AZ80Mg alloy to induce ultrafine grained structure and specific mechanical properties, Procedia Engineering 81 (2014) 534–539.
  • [150] K. Suresh, K. Rao, Y.V.R.K. Prasad, N. Hort, K.U. Kainer, Study of hot forging behavior of as-cast Mg–3Al–1Zn–2Ca alloy towards optimization of its hot workability, Materials and Design 57 (2014) 697–704.
  • [151] J. Jiang, Y. Wang, Y. Li, W. Shan, S. Luo, Microstructure and mechanical properties of the motorcycle cylinder body of AM60B magnesium alloy formed by combining die casting and forging, Materials and Design 37 (2012) 202–210.
  • [152] Y. Wu, Q. Chena, X. Xia, Isothermal precision forging of magnesium alloy components with high performance, Procedia Engineering 207 (2017) 896–901.
  • [153] D. Shan, W. Xu, X. Han, X. Huang, Study on isothermal precision forging process of rare earth intensifying magnesium alloy, Materials Science and Engineering B 177 (2012) 1698–1702.
  • [154] R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, L.M. Zhang, Recent progress in magnesium-lithium alloys, International Materials Review 60 (2015) 65–100.
  • [155] Z. Gao, L. Hu, J. Li, Z. An, J. Li, Q. Huang, Achieving high strength and good ductility in as-extruded Mg–Gd–Y–Zn alloys by Ce micro-alloying, Materials/MDPI/ 11 (2018) 102.
  • [156] A. Woznicki, D. Lesniak, G. Wloch, B. Leszczynska-Madej, A. Wojtyna, The effect of homogenization conditions on the structure and properties of AA6082 alloy billets, Archives of Metallurgy and Materials 60 (3) (2015) 1763–1772.
  • [157] W.Z. Misiolek, R.M. Kelly, Extrusion of Aluminium Alloys, vol. 14A, ASM Handbook, 2005.
  • [158] www.tecalex.com.
  • [159] Patent PL 220476 B1-30.10.2015.
  • [160] F. Gagliardi, T. Citrea, G. Ambrogio, L. Filice, Influence of the process setup on the microstructure and mechanical properties evolution in porthole die extrusion, Materials and Design 60 (August) (2014) 274–281.
  • [161] www.bwe.co.uk.
  • [162] W. Bochniak, A. Korbel, P. Ostachowski, M. Lagoda, Plastic flow of metals under cyclic change of deformation path conditions, Archives of Civil and Mechanical Engineering 18 (2018) 679–686.
  • [163] A. Korbel, W. Bochniak, R. Sliwa, P. Ostachowski, M. Lagoda, Z. Kusion, B. Trzebuniak, Low-temperature consolidation of machining chips from hardly-deformable aluminum alloys, Obróbka Plastyczna Metali Metal Forming XXVII (2016) 133– 151.
  • [164] Patent US 2015/0075242 A1, Friction Extrusion.
  • [165] J. Zasadzinski, A. Rekas, J. Richert, W. Libura, D. Lesniak, Hot extrusion of Al/SiC powder through porthole die, in: International Aluminium Extrusion Technology Seminar ET 12, Miami, USA, (2012) 123–133.
  • [166] S. Shamsudin, M.A. Lajis, Z.W. Zhong, Solid-state recycling of light metals: a review, Advances in Mechanical Engineering 8 (2016) 238.
  • [167] R. Siegbert, N. Yesildag, M. Frings, F. Schmidt, S. e Elgeti, H. Sauerland, M. Behr, C. Windeck, C. Hopmann, Y. Queudeville, U. Vroomen, A. Bührig-Polaczek, Individualized production in die-based manufacturing processes using numerical optimization, The International Journal of Advanced Manufacturing Technology 80 (5–8) (2015) 851.
  • [168] H. Haghighat, M.M. Mahdavi, Analysis and FEM simulation of extrusion process of bimetal tubes through rotating conical dies, Transactions of Nonferrous Metals Society of China 23 (November (11)) (2013) 3392–3399.
  • [169] www.lpw.agh.edu.pl.
  • [170] M. Wielgus, J. Majta, J. Luksza, P. Pac´ko:, Effect of strain path on mechanical properties of wire drawing products, Steel Research International 81 (9) (2010) 490–493.
  • [171] M. Wielgus, J. Majta, J. Luksza, Urządzenie z zespołem ciągadeł do ciągnienia metalowego profilu okrągłego, Patent, PL 219062 B1, 2015.
  • [172] J. Luksza, K. Szajding, M. Ruminski:, Drawing process with ultrasonic activation of sectional drawing die perpendicularly to axis of wire subject to deformation, Steel Research International 81 (9) (2010) 506–509.
  • [173] K. Szajding, J. Luksza:, Wpływ drgań ultradźwiękowych na spadek siły ciągnienia w procesie ‘‘ciągnienie-obkuwanie’’ przez ciągadło dzielone oraz układy ciągadeł typu tandem, Hutnik Wiadomości Hutnicze 78 (1) (2011) 135–138.
  • [174] N. Maropis, Ultrasonic Energy Applied to Metal Drawing – Part I, II, III, Wire Industry, 5, 6, 7, 1991, 251–253, 327–333, 371–373.
  • [175] K. Siegert, A. Mock:, Wire drawing with ultrasonically oscillating dies, Journal of Materials Processing Technology 60 (1996) 657–660.
  • [176] P. Kustra i, The process of ultra-fine wire drawing for magnesium alloy with the guaranteed restoration of ductility between passes, Journal of Materials Processing Technology 247 (2017) 234–242.
  • [177] A. Milenin, et al., Analysis of microstructure and damage evolution in ultra-thin wires of the magnesium alloy MgCa0.8 at multipass drawing, Journal of the Minerals, Metals & Materials Society 68 (12) (2016) 3063–3069.
  • [178] J. Senkara, Wspólczesne stale konstrukcyjne dla przemyslu motoryzacyjnego i wytyczne technologiczne ich zgrzewania, Przeglad spawalnictwa 11 (2009) 3–7.
  • [179] S. Godereaux, S. Vivet, J. Beaudoin, Application of TRIP steels in the automotive industry, in: TRIP – Int. Conf. on TRIP Aided High Strength Ferrous Alloys, GRIPS – Proceeding, Ghent, Belgium, (2002) 321–326.
  • [180] www.uslab-avc.org.
  • [181] Projekt badawczy finansowany przez NCBiR w ramach programu Innotech w sciezce programowej In-tech pt.: Opracowanie innowacyjnej technologii i uruchomienie produkcji walcówki ze stali o zawartości węgla 0,1-0,4% z efektem TRIP oraz wdrożenie technologii ciągnienia nowej generacji drutów ze stali TRIP na wyroby wytwarzane w przemyśle ciągarskim i wyrobów metalowych.
  • [182] S. Wiewiórowska, Analiza teoretyczno-eksperymentalna procesów ciagnienia nowej generacji drutów ze stali TRIP. Series Monografie no. 18. Częstochowa, 2011.
  • [183] S. Wiewiórowska, The influence of strain rate and strain intensity on retained austenite content in structure of steel with TRIP effect, Solid State Phenomena 165 (2010) 216–220.
  • [184] S. Wiewiórowska, Z. Muskalski, The application of low and medium carbon steel with multiphase TRIP structure in drawing industry, Procedia Manufacturing 2 (2015) 181–185.
  • [185] S. Wiewiórowska, Z. Muskalski, Analysis of the influence of drawing speed on the amount of retained austenite in TRIP steel wires, Solid State Phenomena 199 (2013) 379–383.
  • [186] S. Wiewiórowska, Z. Muskalski, M. Skóra, Analiza mozliwosci zastosowania stali typu TRIP na elementy zlaczne, Hutnik–Wiadomosci Hutnicze 1 (2013) 125–129.
  • [187] W. Bleck, A. Frehn, in: Proceedings of the International Conference on Advanced High Strength Sheet Steels for Automotive Applications, Winter Park, (2004) 349–359.
  • [188] Z. Gronostajski, A. Niechajowicz, R. Kuziak, J. Krawczyk, S. Polak, The effect of the strain rate on the stress- strain curve and microstructure of AHSS, Journal of Materials Processing Technology 242 (2017) 246–259.
  • [189] H. Karbasian, A.E. Tekkaya, A review on hot stamping, Journal of Materials Processing Technology 210 (2010) 2103– 2118.
  • [190] R. Neugebauer, F. Schieck, S. Polster, A. Mosel, A. Rautenstrauch, J. Schoenherr, N. Pierschela, Press hardening – an innovative and challenging technology, Archives of Civil and Mechanical Engineering 12 (2) (2012) 113–118.
  • [191] H. Järvinen, M. Isakov, T. Nyyssönen, M. Järvenpää, P. Peura, The effect of initial microstructure on the final properties of press hardened 22MnB5 steels, Materials Science & Engineering A676 (2016) 109–120.
  • [192] M. Schrenk, S. Krenn, M. Rodríguez Ripoll, A. Nevosad, S. Paar, R. Grundtner, G. Rohm, F. Franek, Statistical analysis on the impact of process parameters on tool damage during press hardening, Journal of Manufacturing Processes 23 (2016) 222–230.
  • [193] J. Pujante Agudo, Wear Mechanisms in Press Hardening of Boron Steel, A Dissertation Submitted to Universitat Politecnica de Catalunya, 2015.
  • [194] M. Merklein, J. Lechler, T. Stoehr, Investigation on the thermal behavior of ultra high strength boron manganese steels within hot stamping, International Journal of Material Forming 2 (Suppl. 1) (2009) 259–262.
  • [195] R.W. Neu, Performance and characterization of TWIP steels for automotive applications, Materials Performance and Characterization 2 (2013) 244–284.
  • [196] A.S. Hamada, A. Kisko, A. Khosravifard, M.A. Hassan, L.P. Karjalainen, D. Porter, Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests, Materials Science & Engineering A 712 (2018) 255–265.
  • [197] A. a Quadfasel, J. Lohmar, G. Hirt, Investigations on Springback in high manganese TWIP-steels using U-profile draw bending, Procedia Engineering 207 (2017) 1582–1587.
  • [198] P.K. Mallick, Materials, Design and Manufacturing for Lightweight Vehicles, A Volume in Woodhead Publishing Series in Composites Science and Engineering, 2010.
  • [199] A.R. Antoniswamy, A.J. Carpenter, J.T. Carter, L.G. Hector Jr., E.M. Taleff, Forming-limit diagrams for magnesium AZ31B and ZEK100 alloy sheets at elevated temperatures, Journal of Materials Engineering and Performance 22 (2013) 3389– 3397.
  • [200] D. Steglich, X. Tian, J. Bohlen, S. Riekehr, N. Kashaev, K.U. Kainer, N. Huber, Experimental and numerical crushing analyses of thin-walled magnesium profiles, International Journal of Crashworthiness 20 (2015) 177–190.
  • [201] M. Ambrozinski, L. Rauch, M. Pac´ko, Z. Gronostajski, K. Jaskiewicz, W. Chorzepa, Computer aided design of manufacturing of automotive part made of magnesium alloy, Computer Methods in Materials Science 4 (2016) 177– 186.
  • [202] H. Wang, Y.-B. Luo, P. Friedman, M.-H. Chen, L. Gao, Warm forming behavior of high strength aluminum alloy AA7075, Transactions of Nonferrous Metals Society of China 22 (2012) 1–7.
  • [203] N. Harrison, S. Luckey, Hot stamping of a B-pillar outer from high strength aluminium sheet AA7075, SAE International Journal of Materials and Manufacturing 7 (2014) 567–573.
  • [204] J. Wang, C.-K. Yang, Failure analysis of hydroforming of sandwich panels, Journal of Manufacturing Processes 15 (2013) 256–262.
  • [205] W. Han, K. Zhang, G. Wang, Superplastic forming and diffusion bonding for honeycomb structure of Ti6Al4V alloy, Journal of Materials Processing Technology 183 (2007) 450–454.
  • [206] G. Palumbo, V. Piglionico, A. Piccininni, P. Guglielmi, L. Tricarico, Evaluation of the optimal working conditions for the warm sheet HydroForming taking into account the yielding condition, Materials and Design 91 (2016) 411–423.
  • [207] M. Grüner, T. Gnibl, M. Merklein, Blank hydroforming using granular material as medium – investigations on leakage, Procedia Engineering 81 (2014) 1035–1042.
  • [208] S.E. Eftekhari Shahri, S.Y. Ahmadi Boroughani, K. Khalili, B. S. Kang, Ultrasonic tube hydroforming, a new method to improve formability, Procedia Technology 19 (2015) 90–97.
  • [209] M.W. Fu, W.L. Chan, A review on the state-of-the-art microforming technologies, International Journal of Advanced Manufacturing Technology 67 (2013) 2411–2437.
  • [210] A.R. Razali, Y. Qin, A review on micro-manufacturing, micro-forming and their key issues, Procedia Engineering 53 (2013) 665–672.
  • [211] F. Vollertsen, H.S. Niehoff, Z. Hu, State of the art in micro forming, International Journal of Machine Tools & Manufacture 46 (2006) 1172–1179.
  • [212] F. Luo, K. Li, J. Zhong, F. Gong, X. Wu, S. Ruan, An ultrasonic microforming process for thin sheet metals and its replication abilities, Journal of Materials Processing Technology 216 (2015) 10–18.
  • [213] Q. Zhao, C. Wang, H. Yu, B. Guo, D. Shan, C. Li, Micro bulging of thin T2 copper sheet by electromagnetic forming, Transactions of Nonferrous Metals Society of China 21 (2011) 461–464.
  • [214] H. Liu, Z. Shen, X. Wang, H. Wang, Numerical simulation and experimentation of novel laser indirect shock forming, Journal of Applied Physics 106 (063107) (2009) 1–4.
  • [215] D.Y. Yang, M. Bambach, J. Cao, J.R. Duflou, P. Groche, T. Kuboki, A. Sterzing, A.E. Tekkaya, C.W. Lee, Flexibility in metal forming, CIRP Annals – Manufacturing Technology 67 (2018) 743–765.
  • [216] C. Zheng, S. Sun, Z. Ji, W. Wang, Effect of laser energy on the deformation behavior in microscale laser bulge forming, Applied Surface Science 257 (2010) 1589–1595.
  • [217] J.L. Ocaña, M. Morales, J.A. Porro, J.J. García-Ballesteros, C. Correa, Laser shock microforming of thin metal sheets with ns lasers, Physics Procedia 12 (2011) 201–206.
  • [218] T. Gadek, L. Nowacki, T. Drenger, Hot spinning of the Hastelloy C-276 alloy using a high-power diode laser, Obróbka Plastyczna Metali XXV-4 (2014) 287–299.
  • [219] Q. Xia, G. Xiao, H. Long, X. Cheng, X. Sheng, A review of process advancement of novel metal spinning, International Journal of Machine Tools & Manufacture 85 (2014) 100–121.
  • [220] B. Awiszus, S. Hartel, Numerical simulation of non-circular spinning: a rotationally non-symmetric spinning process, Production Engineering 5 (6) (2011) 605–612.
  • [221] V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, Electromagnetic forming – a review, Journal of Materials Processing Technology 211 (2011) 787–829.
  • [222] Z. Zimniak, G. Radkiewicz, Nowa metoda tloczenia elektromagnetycznego, Prace Naukowe Politechniki Warszawskiej. Mechanika 238 (2011) 39–44 (in Polish).
  • [223] W. Muzykiewicz, J. Bednarczyk, A. Rekas, A. Lukaszka, Wywijanie kolnierzy elementów rurowych sztywnymi narzedziami w warunkach statycznych i metoda tloczenia elektrodynamicznego, Rudy Metale R47 (10–11) (2002) 545– 550 (in Polish).
  • [224] R. Schäfer, P.A. Pasquale, S. Kallee, The Electromagnetic Pulse Technology (EMPT): Forming, Welding, Crimping and Cutting, 2014, . p. 13 www.pstproducts.com.
  • [225] L. Kroll, P. Blau, M. Wabner, U. Frieß, J. Eulitz, M. Klärner, Lightweight components for energy-efficient machine tools, CIRP Journal of Manufacturing Science and Technology 4/2 (2011) 148–160.
  • [226] M.A. Carruth, J.M. Allwood, M.C. Moynihan, The technical potential for reducing metal requirements through lightweight product design, Resources, Conservation and Recycling 57 (2011) 48–60.
  • [227] R. Neugebauer, M. Wabner, S. Ihlenfeldt, U. Frieß, F. Schneider, F. Schubert, Bionics based energy efficient machine tool design, Procedia CIRP 3 (2012) 561–566.
  • [228] N. Senthilnathan, G. Venkatachalam, N.N. Satonkar, A two stage finite element analysis of electromagnetic forming of perforated aluminium sheet metals, Procedia Engineering 97 (2014) 1135–1144.
  • [229] W. Muzykiewicz, Odksztalcalnosc blach perforowanych., Wydawnictwo Naukowe AKAPIT, Kraków, 2013 (in Polish).
  • [230] W. Muzykiewicz, Non-uniformity of plastic deformation of perforated sheet metal, in: M. Pietrzyk, J. Kusiak, J. Majta, P. Hartley, I. Pillinger (Eds.), Proc. of the 8th Int. Conf. on Metal Forming – Metal Forming 2000, BALKEMA, 2000 397–404.
  • [231] H. Park, D. Kim, J. Lee, S.-J. Kim, Y. Lee, Y.H. Moon, Effect of an aluminum driver sheet on the electromagnetic forming of DP780 steel sheet, Journal of Materials Processing Technology 235 (2016) 158–170.
  • [232] X. Cui, J. Li, J. Mo, J. Fang, Y. Zhu, K. Zhong, Investigation of large sheet deformation process in electromagnetic incremental forming, Materials and Design 76 (2015) 86–96.
  • [233] X. Cui, J. Mo, J. Li, X. Xiao, B. Zhou, J. Fang, Large-scale sheet deformation process by electromagnetic incremental forming combined with stretch forming, Journal of Materials Processing Technology 237 (2016) 139–154.
  • [234] J. Shang, G. Daehn, Electromagnetically assisted sheet metal stamping, Journal of Materials Processing Technology 211 (2011) 868–874.
  • [235] J. Mai, L. Peng, X. Lai, Z. Lin, Electrical-assisted embossing process for fabrication of micro-channels on 316L stainless steel plate, Journal of Materials Processing Technology 213 (2013) 314–321.
  • [236] D.R. Bland, H. Ford, Calculation of roll force and torque in cold strip rolling with tensions, Proceedings of the Institution of Mechanical Engineers 159 (1948) 144–153.
  • [237] B. Avitzur, Metal Forming: Processes and Analysis, McGraw- Hill Book Comp., 1979.
  • [238] C.M. Sellars, in: C.M. Sellars, G.J. Davies (Eds.), Hot Working and Forming Processes, The Metals Society, London, 1979 3– 15.
  • [239] M. Avrami, Kinetics of phase change. I. General theory, The Journal of Chemical Physics 7 (1939) 1103–1112.
  • [240] C.H. Lee, S. Kobayashi, New solutions to rigid-plastic deformation problems using a matrix method, Journal of Engineering for Industry 95 (1973) 865–873.
  • [241] S. Kobayashi, S.I. Oh, T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, New York, Oxford, 1989.
  • [242] S. Andrietti, J.L. Chenot, M. Bernacki, P.O. Bouchard, L. Fourment, E. Hachem, E. Perchat, Recent and future developments in finite element metal forming simulation, Computer Methods in Materials Science 15 (2015) 265–293.
  • [243] M. Vaz, E.A. Souza Neto, P.A. Munoz-Rojas, Advanced Computational Materials Modeling, Wiley-VCH, 2011.
  • [244] D. Gerasimov, A. Gartvig, Parallel computing of metal forming simulation in QForm software, Computer Methods in Materials Science 16 (2016) 139–142.
  • [245] M. Pietrzyk, L. Madej, Perceptive review of ferrous micro/ macro material models for thermo-mechanical processing applications, Steel Research International 88 (2017) 1700193.
  • [246] B. Scholtes, M. Shakoor, A. Settefrati, P.O. Bouchard, N. Bozzolo, M. Bernacki, New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science 109 (2015) 388–398.
  • [247] L. Sieradzki, L. Madej, A perceptive comparison of the cellular automata and Monte Carlo techniques in application to static recrystallization modeling in polycFigtalline materials, Computational Materials Science 67 (2013) 156–173.
  • [248] Y. Mellbin, H. Hallberg, M. Ristinmaa, A combined cFigtal plasticity and graph-based vertex model of dynamic recrystallization at large deformations, Modelling and Simulation in Materials Science and Engineering 23 (2015).
  • [249] L. Madej, Digital/virtual microstructures in application to metals engineering – a review, Archives of Civil and Mechanical Engineering 17 (2017) 839–854.
  • [250] O.N. Senkov, D.B. Miracle, S.A. Firstov, Metalic materials with high structural efficiency, NATO Science Series – Mathematics, Physics and Chemistry (2003) 146.
  • [251] S. Schmauder, I. Schafer, Multiscale Materials Modelling: Approaches to Full Multiscaling, Walter de Gruyter GmbH & Co., 2016.
  • [252] R. Schultea, P. Hildenbranda, M. Lechnera, M. Merklein, Designing, manufacturing and processing of Tailored Blanks in a sheet-bulk metal forming process, Procedia Manufacturing 10 (2017) 286–297.
  • [253] J. Plumeri, L. Madej, W. Misiolek, Development of extrusion technology for magnesium alloy ZE20, Procedia Engineering 207 (2017) 389–394.
  • [254] E. Cueto, F. Chinesta, Meshless methods for the simulation of material forming: a review, International Journal of Material Forming 8 (2015) 25–43.
  • [255] I. Iaconeta, A. Larese, R. Rossi, Z. Guo, Comparison of a material point method and a Galerkin Meshfree Method for the simulation of cohesive-frictional materials, Materials 10 (2017) 1–27.
  • [256] C. Zheng, D. Raabe, Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: a cellular automaton model, Acta Materialia 61 (2013) 5504–5517.
  • [257] Y. Jin, N. Bozzolo, A.D. Rollett, M. Bernacki, 2D finite element modeling of misorientation dependent anisotropic grain growth in polycFigtalline materials: level set versus multi-phase-field method, Computational Materials Science 104 (2015) 108–123.
  • [258] D.S. Svyetlichnyy, Modeling of grain refinement by cellular automata, Computational Materials Science 77 (2013) 408– 416.
  • [259] L. Madej, M. Sitko, Parallelization of the Monte Carlo static recrystallization model, Lecture Notes in Computer Science 8500 (2014) 445–458.
  • [260] G.J. Schmitz, U. Prahl, Integrative Computational Materials Engineering – Concepts and Applications of a Modular Simulation Platform, Wiley-VCH, 2012.
  • [261] M.F. Horstemeyer, Integrated Computational Materials Engineering (ICME) for Metals: Using multiscale Modeling to Invigorate Engineering Design with Science, John Wiley & Sons, 2012.
  • [262] G.J. Schmitz, U. Prahl, Handbook of Software Solutions for ICME, Wiley-VCH, 2016.
  • [263] W. Bleck, U. Prahl, G. Hirt, M. Bambach, in: C. Brecher (Ed.), Advances in Production Technology, Springer Verlag, Berlin, 2015.
  • [264] L. Madej, T. Tokunaga, K. Matsuura, M. Ohno, M. Pietrzyk, Physical and numerical modelling of backward extrusion of Mg alloy with Al coating, Annals of the CIRP 64 (2015) 253– 256.
  • [265] J. Szyndler, L. Delannay, K. Muszka, L. Madej, Numerical and experimental microscale analysis of the incremental forming process, AIP Conference Proceedings 1896 (2017), 080006.
  • [266] J. Majta, L. Madej, D. Svyetlichnyy, K. Muszka, K. Perzynski, M. Kwiecien, Modeling of the inhomogeneity of grain refinement during combined metal forming process by finite element and cellular automata methods, Materials Science & Engineering A671 (2016) 204–213.
  • [267] L. Madej, M. Ambrozinski, M. Kwiecien, Z. Gronostajski, M. Pietrzyk, Digital material representation concept applied to investigation of local inhomogeneities during manufacturing of magnesium components for automotive applications, International Journal of Materials Research 108 (2017) 3–11.
  • [268] L. Madej, R. Kuziak, M. Mroczkowski, K. Perzynski, W. Libura, M. Pietrzyk, Development of the multi scale model of cold rolling based on physical and numerical investigation of ferritic–pearlitic steels, Archives of Civil and Mechanical Engineering 15 (2015) 885–896.
  • [269] M. Tkocz, F. Grosman, Application of incremental forming for production of aircraft integral panels, Solid State Phenomena 212 (2014) 243–246.
  • [270] A. Quarteroni, G. Rozza (Eds.), Reduced Order Methods for Modeling and Computational Reduction, Springer, 2014.
  • [271] N. Mekras, Using artificial neural networks to model aluminium based sheet forming processes and tools details, Journal of Physics: Conference Series 896 (2017) 012090.
  • [272] D. Szeliga, Identification Problems in Metal Forming: A Comprehensive Study, vol. 291, Publ. AGH University of Science and Technology, Krakow, 2013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af7f671b-8218-4c16-975e-2aeae9d45f15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.