Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The greatest challenge of widely developed incremental manufacturing methods today is to obtain, as a result of the manufacturing process, such components that will have acceptable strength properties from the point of view of a given application. These properties are indirectly determined by three key characteristics: the level of surface residual stress, the roughness of the component and its porosity. Currently, the efforts of many research groups are focused on the problem of optimizing the parameters of incremental manufacturing so as to achieve the appropriate level of compressive residual stress, the lowest possible porosity and the lowest possible roughness of parts obtained by 3D methods. It is now recognized that determining the level of these three parameters is potentially possible using experimental X-ray diffraction methods. The use of this type of radiation, admittedly, is only used to characterize the surface layer of elements, but its undoubted advantage is its easy availability and relatively low cost compared to experiments carried out using synchrotron or neutron radiation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
72--80
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw, Poland
autor
- Łukasiewicz Research Network - Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw, Poland
Bibliografia
- [1] Yap, C.Y. et al. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, vol. 2, p. 041101. DOI: 10.1063/1.4935926.
- [2] Hooper, P.A. (2018). Melt pool temperature and cooling rates in laser powder bed fusion. Additive Manufacturing, vol. 22, pp. 548-559. DOI: 10.1016/j.addma.2018.05.032.
- [3] Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K. and Schrage, J. (2014). Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. Journal of Laser Applications, vol. 26 (1), p. 012004. DOI: 10.2351/1.4828755.
- [4] Qiu, C., Panwisawas, C., Ward, M., Basoalto, H.C., Brooks, J.W. and Attallah, M.M. (2015). On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia, vol. 96, pp. 72-79. DOI: 10.1016/j.actamavol.2015.06.004.
- [5] Tebedge, N., Alpsten, G. and Tall, L. (1973). Residual-stress measurement by the sectioning method: A procedure for residual-stress measurements by the sectioning method is described. Two different hole-drilling methods were performed and the results are compared. Experimental Mechanics, vol. 13 (2), pp. 88-96. DOI: 10.1007/BF02322389.
- [6] Vrancken, B., Cain, V., Knutsen, R. and Van Humbeeck, J. (2014). Residual stress via the contour method in compact tension specimens produced via selective laser melting. Scripta Materialia, vol. 87, pp. 29-32. DOI: 10.1016/j.scriptamavol.2014.05.016.
- [7] Salmi, A., Atzeni, E., Iuliano, L. and Galati, M. (2017). Experimental Analysis of Residual Stresses on AlSi10Mg Parts Produced by Means of Selective Laser Melting (SLM). Procedia CIRP, vol. 62, pp. 458-463. DOI: 10.1016/j.procir.2016.06.030.
- [8] Giri, A. and Mahapatra, M.M. (2017). On the measurement of sub-surface residual stresses in SS 304L welds by dry ring core technique. Measurement, vol. 106, pp. 152-160. DOI: 10.1016/j.measuremenvol.2017.04.043.
- [9] Gripenberg, H., Keinänen, H., Ohms, C., Hänninen, H., Stefanescu, D. and Smith, D.J. (2002). Prediction and Measurement of Residual Stresses in Cladded Steel. Materials Science Forum, vol. 404-407, pp. 861-866. DOI: 10.4028/www.scientific.net/MSF.404-407.861.
- [10] Letner, H.R. and Maloof, S.R. (1954). Stress Measurement by X‐Ray Diffraction. Journal of Applied Physics, vol. 25 (11), pp. 1440-1440. DOI: 10.1063/1.1721586.
- [11] Belassel, M., Pineault, J. and Brauss, M.E. (2006). Review of Residual Stress Determination and Exploitation Techniques Using X-Ray Diffraction Method. Materials Science Forum, vol. 524-525, pp. 229-234. DOI: 10.4028/www.scientific.net/MSF.524-525.229.
- [12] Stacey, A., MacGillivary, H.J., Webster, G.A., Webster, P.J. and Ziebeck, K.R.A. (1985). Measurement of residual stresses by neutron diffraction. The Journal of Strain Analysis for Engineering Design, vol. 20 (2), pp. 93-100. DOI: 10.1243/03093247V202093.
- [13] Pintschovius, L. (1989). Determination of residual stresses by neutron diffraction. Memoires et Etudes Scientifiques de la Revue de Metallurgie, vol. 86 (11), pp. 723-728.
- [14] Fiori, F., Girardin, E., Giuliani, A., Manescu, A. and Rustichelli, F. (2004). Neutron and synchrotron non-destructive methods for residual stress determination in materials for industrial applications. In Senkov, O.N., Miracle, D.B., Firstov, S.A. (eds) Metallic Materials with High Structural Efficiency. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 146, pp. 425-432. Springer, Dordrecht. DOI: 10.1007/1-4020-2112-7_43.
- [15] Kudryavtsev, Y., Kleiman, J. and Potapova, L. (2015). Measurement of Residual Stresses in Welded Elements and Structures by Ultrasonic Method. In M2d2015: Proceedings of the 6th International Conference on Mechanics and Materials in Design, Porto, 26-30 July 2015 (pp. 1833-1834).
- [16] Barton, J. (1975). Residual-Stress Measurement Using Barkhausen Noise-Analysis. Mater. Eval., vol. 33 (7), pp. 188-188.
- [17] Zhu, L.-N., Xu, B.-S., Wang, H.-D. and Wang, C.-B. (2015). Measurement of Residual Stresses Using Nanoindentation Method. Critical Reviews in Solid State and Materials Sciences, vol. 40 (2), pp. 77-89. DOI: 10.1080/10408436.2014.940442.
- [18] Standard SAE International. (2003). Residual Stress Measurement by X-Ray Diffraction, 2003 Edition. HS-784/2003. https://www.sae.org/publications/books/content/hs-784/2003/
- [19] Standard ISO. (2019). Non-destructive testing - Standard test method for determining residual stresses by neutron diffraction. ISO 21432:2019. https://www.iso.org/standard/75266.html
- [20] Edwards, L. (2005). Integrated use of synchrotron and neutron diffraction to monitor residual stress evolution in welded aerospace structures. Acta Cryst A, vol. 61. DOI: 10.1107/S0108767305097618.
- [21] Farajian, M. Nitschke-Pagel, T., Wimpory, R.C., Hofmann, M. and Klaus, M. (2011). Residual stress field determination in welds by means of X-ray, synchrotron and neutron diffraction. Materialwissenschaft und Werkstofftechnik, vol. 42 (11), pp. 996-1001. DOI: 10.1002/mawe.201100782.
- [22] Bugaev, A.S., Eroshkin, P.A., Romanko, V.A., and Sheshin, E.P. (2013). Low-power X-ray tubes (the current state). Physics-Uspekhi, vol. 56 (7), p. 691. DOI: 10.3367/UFNe.0183.201307c.0727.
- [23] Wille, K. (1991). Synchrotron radiation sources. Reports on Progress in Physics, vol. 54 (8), p. 1005. DOI: 10.1088/0034-4885/54/8/001.
- [24] Yadroitsava, I. and Yadroitsev, I. (2014). Evaluation of Residual Stress in Selective Laser Melting of 316l Steel. In Proceedings of the 1st International Conference on Progress in Additive Manufacturing, Singapore, 26-26 May 2014 (pp. 278-283). DOI: 10.3850/978-981-09-0446-3_038.
- [25] Yadroitsev, I. and Yadroitsava, I. (2015). Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting. Virtual and Physical Prototyping, vol. 10 (2), pp. 67-76. DOI: 10.1080/17452759.2015.1026045.
- [26] Morita, T., Tsuda, C., Sakai, H. and Higuchi, N. (2017). Fundamental Properties of Ti-6Al-4V Alloy Produced by Selective Laser Melting Method. Materials Transactions, vol. 58, (10), pp. 1397-1403. DOI: 10.2320/matertrans.M2017103.
- [27] Simson, T, Emmel, A., Dwars, A. and Böhm, J. (2017). Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Additive Manufacturing, vol. 17, pp. 183-189. DOI: 10.1016/j.addma.2017.07.007.
- [28] Thiede, T. et al. (2018). Residual Stress in Selective Laser Melted Inconel 718: Influence of the Removal from Base Plate and Deposition Hatch Length. MPC, vol. 7 (4), pp. 717-735. DOI: 10.1520/MPC20170119.
- [29] Nadammal, N., Kromm, A., Saliwan-Neumann, R., Farahbod, L., Haberland, C. and Portella, P.D. (2018). Influence of Support Configurations on the Characteristics of Selective Laser-Melted Inconel 718. JOM, vol. 70 (3), pp. 343-348. DOI: 10.1007/s11837-017-2703-1.
- [30] Rosenthal, I., Shneck, R. and Stern, A. (2018). Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process. Materials Science and Engineering: A, vol. 729, pp. 310-322. DOI: 10.1016/j.msea.2018.05.074.
- [31] Bartlett, J.L., Croom, B.P., Burdick, J., Henkel, D. and Li, X. (2018). Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation. Additive Manufacturing, vol. 22, pp. 1-12. DOI: 10.1016/j.addma.2018.04.025.
- [32] López, C., Elías-Zúñiga, A., Jiménez, I., Martínez-Romero, O., Siller, H.R. and Diabb, J.M. (2018). Experimental Determination of Residual Stresses Generated by Single Point Incremental Forming of AlSi10Mg Sheets Produced Using SLM Additive Manufacturing Process. Materials, vol. 11 (12), DOI: 10.3390/ma11122542.
- [33] Xing, X., Duan, X., Sun, X., Gong, H., Wang, L. and Jiang, F. (2019). Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique. Materials, vol. 12 (3), p. 455. DOI: 10.3390/ma12030455.
- [34] Yakout, M., Elbestawi, M.A. and Veldhuis, S.C. (2019). Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. Journal of Materials Processing Technology, vol. 266, pp. 397-420, 2019, DOI: 10.1016/j.jmatprotec.2018.11.006.
- [35] Fang, Z.-C., Wu, Z.-L., Huang, C.-G. and Wu, C.-W. (2020). Review on residual stress in selective laser melting additive manufacturing of alloy parts. Optics & Laser Technology, vol. 129, p. 106283. DOI: 10.1016/j.optlastec.2020.106283.
- [36] Li, M., Li, J., Yang, D. and He, B. (2020). Dimensional Deviation Management for Selective Laser Melted Ti6Al4V Alloy Blade. Frontiers in Materials, vol. 7, p. 42. DOI: 10.3389/fmats.2020.00042.
- [37] Portella, Q., Chemkhi, M. and Retraint, D. (2020). Influence of Surface Mechanical Attrition Treatment (SMAT) post-treatment on microstructural, mechanical and tensile behaviour of additive manufactured AISI 316L. Materials Characterization, vol. 167, p. 110463. DOI: 10.1016/j.matchar.2020.110463.
- [38] Vishwakarma, J., Chattopadhyay, K. and Santhi Srinivas, N.C. (2020). Effect of build orientation on microstructure and tensile behaviour of selectively laser melted M300 maraging steel. Materials Science and Engineering: A, vol. 798, p. 140130. DOI: 10.1016/j.msea.2020.140130.
- [39] Nagesha, B.K., Anand Kumar, S., Vinodh, K., Pathania, A. and Barad, S. (2021). A thermo - Mechanical modelling approach on the residual stress prediction of SLM processed HPNGV aeroengine part. Materials Today: Proceedings, vol. 44, pp. 4990-4996. DOI: 10.1016/j.matpr.2020.12.940.
- [40] Takase, A., Ishimoto, T., Suganuma, R. and Nakano, T. (2021). Lattice distortion in selective laser melting (SLM)-manufactured unstable β-type Ti-15Mo-5Zr-3Al alloy analyzed by high-precision X-ray diffractometry. Scripta Materialia, vol. 201, p. 113953. DOI: 10.1016/j.scriptamat.2021.113953.
- [41] Galarraga, H., Warren, R.J., Lados, D.A., Dehoff, R.R., Kirka, M.M. and Nandwana, P. (2017). Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Materials Science and Engineering: A, vol. 685, pp. 417-428. DOI: 10.1016/j.msea.2017.01.019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af75706d-54fb-40b4-aabd-b918a541ff5f