Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The crescent-shaped microstructure bionic to the slip zone of the slippery zone of the carnivorous plant genus Nepenthes was fabricated on the surface of copper foil by laser shock imprinting (LSI). The microstructure of crescent-shaped grooves was initially fabricated on the surface of the micro-mold by etching, and then the microstructure was replicated on the surface of copper foil through plastic deformation under laser shock loading. Increasing the laser shock energy or the number of shocks can increase the degree of replication of the crescent-shaped microstructure, the height of the crescent-shaped microstructure, and the contact angle of water droplets on the surface. The wettability of the surface of the crescent microstructure is anisotropic and increases with an increase in offset distance. The anisotropy of the crescent-shaped microstructure causes the solid–liquid contact line in the direction of the bottom of the arc to become a long and approximately straight line. According to the rule that controlling LSI processing parameters can fabricate surfaces with different heights and wettability, a gradient wetting surface consisting of crescent-shaped microstructures was designed to achieve the directional spreading of droplets. By altering the distribution of crescent-shaped microstructures, a type-I flow channel with the ability to limit the spreading range of water droplets was fabricated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
140--158
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
autor
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, China
Bibliografia
- [1] Wang Q, Xu SS, Xing XT, Wang N. Progress in fabrication and applications of micro/nanostructured superhydrophobic surfaces. Surf Innov. 2022;10:89-110.
- [2] Yang Y, Li XL, Zheng X, Chen ZY, Zhou QF, Chen Y. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater. 2018;30.
- [3] Zhang SN, Huang JY, Chen Z, Lai YK. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small. 2017;13.
- [4] Zhu H, Guo ZG, Liu MM. Biomimetic watercollecting materials inspired by nature. Chem Commun. 2016;52:3863-79.
- [5] Zheng YM, Gao SF, Jiang L. Directional adhesion of superhydrophobic butterfly wings. J Soft Matter 2007;3:178-82.
- [6] Yang L, Shen XD, Yang Q, Liu JQ, Wu WJ, Li DY, et al. Fabrication of biomimetic anisotropic superhydrophobic surface with rice leaf-like structures by femtosecond laser. Opt Mater. 2021;112.
- [7] Chen HW, Zhang PF, Zhang LW, Iu HLL, Jiang X, Zhang DY, et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature. 2016;532:85-+.
- [8] Feng SL, Zhu PA, Zheng HX, Zhan HY, Chen C, Li JQ, et al. Three-dimensional capillary ratchet-induced liquid directional steering, Science. 2021;373:1344-+.x
- [9] Hu BB, Duan ZF, Xu BJ, Zhang KJ, Tang ZX, Lu C, et al. Ultrafast self-propelled directional liquid transport on the pyramid-structured fibers with concave curved surfaces. J Am Chem Soc. 2020;142:6111-6.
- [10] Li, Li JQ, Dong. Bioinspired topological surface for directional oil lubrication. ACS Appl Mater Interfaces. 2020;12:5113-9.
- [11] Zheng YM, Bai H, Huang ZB, Tian XL, Nie FQ, Zhao Y, et al. Directional water collection on wetted spider silk. Nature. 2010;463:640-3.
- [12] Wang LX, Zhang SY, Li SS, Yang SX, Dong SY. Inner surface of Nepenthes slippery zone: ratchet effect of lunate cells causes anisotropic superhydrophobicity. R Soc Open Sci. 2020;7.
- [13] Zhang PF, Chen HW, Li L, Liu HL, Liu G, Zhang LW, et al. Bioinspired smart peristome Ssurface for temperature-controlled unidirectional water spreading. ACS Appl Mater Interfaces. 2017;9:5645-52.
- [14] Barraza B, Olate-Moya F, Montecinos G, Ortega JH, Rosenkranz A, Tamburrino A, Palza H. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Sci Technol Adv Mater 2022;23:300-21.
- [15] Yunusa M, Ozturk FE, Yildirim A, Tuvshindorj U, Kanik M, Bayindir M. Bio-inspired hierarchically structured polymer fibers for anisotropic non-wetting surfaces. RSC Adv. 2017;7:15553-60.
- [16] Yong JL, Yang Q, Chen F, Zhang DS, Farooq U, Du GQ, Hou X. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. J Mater Chem A. 2014;2: 5499-507.
- [17] Chung JY, Youngblood JP, Stafford CM. Anisotropic wetting on tunable micro-wrinkled surfaces. J Soft Mat ter. 2007;3:1163-9.
- [18] Huang JH, Xu XT, Li SN, Peng LF, Lai XM. An experimental study on a rapid micro imprinting process. J Mater Proc Technol. 2020;283.
- [19] Shen ZB, Zhang L, Li P, Liu HX, Liu K, Lin XY, et al. Altering the surface wettability of copper sheet using overlapping laser shock imprinting. Appl Surf Sci. 2021;543.
- [20] Jin SY, Wang YX, Motlag M, Gao SJ, Xu J, Nian Q, et al. Large-area direct laser-shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators. Adv Mater. 2018;30.
- [21] Man JX, Zhao JY, Yang HF, Song LC, Liu D. Study on laser shock imprinting nanoscale line textures on metallic foil and its application in nanotribology. Mater Design. 2020;193.
- [22] Yang HF, Jia L, Liu K, Wang Y, Xiong F, Liu H, Hao JB. High precision complete forming process of metal microstructure induced by laser shock imprinting. Int J Adv Manufact Technol. 2020;108:143-55.
- [23] Choi DC, Kim HS. Performance evaluation of laser shock micro-patterning process on aluminum surface with various process parameters and loading schemes. Opt Lasers \Eng. 2020;124.
- [24] Zhang BC, Yang HF, Xiong F, Liu H, Hao JB, Liu XH. Research on the transient forming process and high-temperature stability mechanism of warm laser shock imprinting. Opt Lasers Eng. 2021;146.
- [25] Man JX, Yang HF, Wang YF, Chen HX, Xiong F. Study on controllable surface morphology of the micro-pattern fabricated on metallic foil by laser shock imprinting. Opt Lasers \Technol. 2019;119.
- [26] Riedel M, Eichner A, Jetter R. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta. 2003;218:87-97.
- [27] Zhang WW, Yao YL. Micro scale laser shock processing of metallic components. J Manufact Sci Eng-Trans ASME. 2002;124:369-78.
- [28] Wang SL, Yu NZ, Wang TQ, Ge P, Ye SS, Xue PH, et al. Morphology-patterned anisotropic Wetting surface for fluid control and gas-liquid separation in microfluidics. ACS Appl Mater Interfaces. 2016;8:13094-103.
- [29] Jing X, Si WF, Sun J, Zhou JK, Lin JQ, Yu BJ, Lu MM. Wettability and droplet directional spread investigation of Crescent array surface inspired by slippery zone of Nepenthes. Adv Mater Interfaces. 2022;9.
- [30] Wang LX, Yin K, Deng QW, Huang QQ, He J, Duan JA. Wetting ridge-guided directional water self-transport. Adv Sci. 2022;9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af692374-1a2d-41e7-a78a-703af7280bdf