PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of rotation on a semiconducting medium with two-temperatures under L-S theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The model of the equations of generalized thermoelasticity in a semi-conducting medium with two-temperature is established. The entire elastic medium is rotated with a uniform angular velocity. The formulation is applied under Lord-Schulman theory with one relaxation time. The normal mode analysis is used to obtain the expressions for the considered variables. Also some particular cases are discussed in the context of the problem. Numerical results for the considered variables are obtained and illustrated graphically. Comparisons are also made with the results predicted in the absence and presence of rotation as well as two-temperature parameter.
Rocznik
Strony
101--122
Opis fizyczny
Bibliogr. 35 poz., rys., wz.
Twórcy
  • Department of Mathematics, Faculty of Science, P.O. Box 44519, Zagazig University, Zagazig, Egypt
  • Department of Mathematics, Faculty of Science, Taif University 888, Saudi Arabia
  • Department of Mathematics, Faculty of Science, P.O. Box 44519, Zagazig University, Zagazig, Egypt
  • Department of Mathematics, Faculty of Science, P.O. Box 44519, Zagazig University, Zagazig, Egypt
Bibliografia
  • [1] BIOT M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(1956), 3, 240–253.
  • [2] LORD H.W., Shulman Y.A.: Generalized dynamical theory of thermo-elasticity. J. Mech. Phys. Solids. 15(1967), 5, 299–30.
  • [3] MAXWELL J.C.: On the dynamical theory of gases. J. Philos. Trans. Roy. Soc. London. 157(1867), 49–88.
  • [4] CATTANEO C.: Sur une forme de l’equation de la chaleur elinant le paradoxe d’une propagation instantance. CR Acad. Sci. 247(1958), 431–432 (in France).
  • [5] VERNOTTE P.: Les paradoxes de la theorie continue de l’equation de la chaleur. CR Acad. Sci. 246(1958), 3154–3155 (in Franch).
  • [6] DHALIWAL R., SHERIEF H.H.: Generalized thermoelasticity for anisotropic media. Quart. Appl. Math. 33(1980), 1, 1-8.
  • [7] OTHMAN M.I.A., SAID S.M.: The effect of rotation on two-dimensional problem of a fiber-reinforced thermoelastic with one relaxation time. Int. J. Thermophysics. 33(2012), 1, 160-171.
  • [8] GORDON J. P., LEITE R.C.C., MOORE R.S.: Long-transient effects in lasers with inserted liquid samples. J. Appl. Phys. 36(1965), 1, 3–8.
  • [9] KREUZER L.B.: Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42(1971), 7, 2934–2943.
  • [10] TODOROVIC D.M., NIKOLIC P.M., BOJICIC A.I.: Photoacoustic frequency transmission technique: Electronic deformation mechanism in semiconductors. J. Appl. Phys. 85(1999), 7716–7726.
  • [11] SONG Y.Q., TODOROVIC D.M., CRETIN B.: Study on the generalized thermoelastic vibration of the optically excited semiconducting micro-cantilevers. Int. J. Solids Struct. 47(2010), 14-15, 1871–1875.
  • [12] TODOROVIC D.M.: Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74(2003), 1, 582–585.
  • [13] SONG Y.Q., BAI J.T., REN Z.Y.: Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 223(2012), 7, 1545–1557.
  • [14] SCHOENBERG M., CENSOR D.: Elastic waves in rotating media. Q. J. Appl. Maths. 31(1973), 1, 115–125.
  • [15] CHAND D., SHARMA J.N., SUD S.P.: Transient generalized magneto-thermo-elastic waves in a rotating half space. Int. J. Eng. Sci. 28(1990), 547–556.
  • [16] DESTRADE M.: Surface waves in rotating rhombic crystal. Proc. Royal Soc. A 460(2004), 653–665.
  • [17] OTHMAN M.I.A.: Effect of rotation in the case of 2-D problems of the generalized thermoelasticity with thermal relaxation. Mech. Mech. Eng. 9(2005), 2, 115–130.
  • [18] OTHMAN M.I.A., SINGH B.: The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories. Int. J. Solids Struct. 44(2007), 2748–2762.
  • [19] OTHMAN M.I.A, HASONA W.M., ERAKI E.E.M.: Effect of magnetic field on generalized thermoelastic rotating medium with two temperature under five theories. J. Comput, Theor. Nanos. 12(2015), 8, 1677–1686.
  • [20] HAYAT T., MUMTAZ S., ELLAHI R.: MHD unsteady flows due to non- coaxial rotations of a disk and a fluid at infinity. Acta Mech. Sinica. 19(2003), 3, 235-240.
  • [21] HAYAT T., ELLAHI R., ASGHAR S., SIDDIQUI A.M.: Flow induced by non-coaxial rotation of a porous disk executing non-torsional oscillating and second grade fluid rotating at infinity. Appl. Math. Model. 28(2004), 6, 591-605.
  • [22] HAYAT T., ELLAHI R., ASGHAR S.: Unsteady periodic flows of a magnetohydrodynamic fluid due to non-coaxial rotations f a porous disk and fluid at infinity. Math. Comput. Model. 40(2004), No. 1-2, 173-179.
  • [23] HAYAT T., ELLAHI R., ASGHAR S.: Unsteady magnetohydrodynamic non-Newtonian flow due to non-coaxial rotations of a disk and a fluid at infinity. Chem. Eng. Commun. 194(2007), 1, 37-49.
  • [24] ELLAHI R., ASGHAR S.: Couette flow of a Burgers’ fluid with rotation. Int. J. Fluid Mech. Res. 34(2007), 548-561.
  • [25] HAYAT T., ELLAHI R., ASGHAR S.: Hal l effects on unsteady flow due to noncoaxially rotating disk and a fluid at infinity. Chem. Eng. Commun. 195(2008), 8, 958–976.
  • [26] CHEN P.J., GURTIN M.E.: On a theory of heat conduction involving two temperatures. ZAMP 19(1968), 4, 614–627.
  • [27] CHEN P. J., GURTIN M.E., WILLIAMS W.O.: A note on non-simple heat conduction. ZAMP 19(1968), 6, 969–970.
  • [28] CHEN P.J., GURTIN M.E., WILLIAMS W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. ZAMP 20(1969), 1, 107–112.
  • [29] BOLEY B. A., SNPLACETOLINS SNI. S.: Transient coupled thermoelastic boundary value problems in the half-space. J. App. Mech. 29(1962), 4, 637–646.
  • [30] WARREN W.E., CHEN P.J.: Wave propagation in the two-temperature theory of thermoelasticity. Acta Mech. 16(1973), 1-2, 21–33.
  • [31] YOUSSEF H.M.: Theory of two-temperature generalized thermoelasticity. IMAJ. Appl. Math. 71(2006), 3, 383–390.
  • [32] YOUSSEF H.M.: Two-dimensional problem of two-temperature generalized thermoelastic half-space subjected to Ramp-type heating. J. Comp. Math. Model. 19(2008), 201–216.
  • [33] ABBAS I.A., YOUSSEF H.M.: Two-temperature generalized thermoelasticity under ramp-type heating by finite element method. Meccanica 48(2013), 2, 331–339.
  • [34] BIJARNIA R., SINGH B.: propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids. Int. J. of Appl. Mech. Eng. 21(2016), 1, 285–301.
  • [35] KAVIANY M.: Heat Transfer Physics. Cambridge Univ. Press, Cambridge 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af548968-81b9-41f1-8f3c-939e898cae56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.