PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single-objective optimal power flow for electric power systems based on crow search algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the application of a recent meta-heuristic optimization technique named a crow search algorithm (CSA) in solving the problem of an optimal power flow (OPF) for electric power systems. Various constrained objective functions, total fuel cost, active power loss and pollutant emission are proposed. The generators’ output powers, generators’ terminal voltages, transmission lines’ taps and the shunt capacitors’ reactive powers are considered as variables to be designed. The proposed methodology based on the CSA is applied on an IEEE 30-bus system and IEEE 118-bus system. The obtained results via the CSA are compared to others and they ensure the superiority of the CSA in solving the OPF problem in electric power systems.
Rocznik
Strony
123--138
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wz.
Twórcy
autor
  • Electric power and machines dept., Faculty of Engineering, Zagazig University, Egypt
autor
  • Electric power and machines dept., Faculty of Engineering, Ain-shams university, Egypt
Bibliografia
  • [1] Frank S., Steponavice I., Rebennack S., Optimal power flow: a bibliographic survey I, Energy Systems, vol. 3, pp. 221–258 (2012).
  • [2] Frank S., Steponavice I., Rebennack S., Optimal power flow: a bibliographic survey II Nondeterministic and hybrid methods, Energy Systems, vol. 3, pp. 259–289 (2012).
  • [3] Lin Q.G., Huang G.H., Bass B., Huang Y.F., Liu L., Optimization of energy systems under changing policies of greenhouse-gas emission control: a study for the province of Saskatchewan, Canada, Energy Sources, vol. 32, no.17, pp. 1556–7230 (2010).
  • [4] Alsac O., Stott B., Optimal load flow with steady-state security, IEEE Transactions on Power Apparatus and Systems, vol. 93, no. 3, pp. 745–751 (1974).
  • [5] Radman G., Shultz J., A new derivation for Newton-based optimal power flow solution, Electric Power Components and Systems, vol. 33, no. 6, pp. 673–684 (2005).
  • [6] Grudinin N., Reactive power optimization using successive quadratic programming method, IEEE Transactions on Power Systems, vol.13, no. 4, pp. 1219–1225 (1998).
  • [7] Lin Q.G., Huang G.H., A dynamic inexact energy systems planning model for supporting greenhousegas emission management and sustainable renewable energy, Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 1836–1853 (2009).
  • [8] Shoults R.R., Sun D.T., Optimal power flow based on P-Q decomposition, IEEE Transactions on Power Apparatus System, vol. 101, no. 2, pp. 397-405 (1982).
  • [9] Khaled Z., Sayah S., Optimal power flow with environmental constraints using a fast successive linear programming algorithm, applications to the Algerian power system, Energy Conversion and Management, vol. 49, no. 11, pp. 3362–3366 (2008).
  • [10] Sousa A.A., Torres G.L., Canizares C.A., Robust optimal power flow solution using trust region and interior-point methods, IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 487–499 (2011).
  • [11] Osman M.S. Abo-Sinna M.A., Mousa A.A., A solution to the optimal power flow using genetic algorithm, Applied Mathematics and Computation, vol. 155, no. 2, pp. 391–405 (2004).
  • [12] Samir S., Khaled Z., Modified differential evolution algorithm for optimal power flow with non-smooth cost functions, Energy Conversion and Management, vol. 49, no. 11, pp. 3036–3042 (2008).
  • [13] Saini A., Chaturvedi D.K., Saxena A.K., Optimal power flow solution: a GA-fuzzy system approach, International Journal of Emerging Electric Power Systems, vol. 5, no. 2, pp. 1–21 (2006).
  • [14] Niknam T., Narimani M.R., Aghaei J., Tabatabaei S., Nayeripour M., Modified Honey Bee Mating Optimisation to solve dynamic optimal power flow considering generator constraints, IET Generation, Transmission & Distribution, vol. 5, no. 10, pp. 989–1002 (2011).
  • [15] Abido M.A., Optimal power flow using tabu search algorithm, Electric Power Components and Systems, vol. 30, no. 5, pp. 469–483 (2002).
  • [16] Liang R.H., Tsai S.R., Chen Y.T., Tseng W.T., Optimal power flow by a fuzzy based hybrid particle swarm optimization approach, Electric Power System Research, vol. 81, no. 7, pp. 1466–1474 (2011).
  • [17] Hinojosa V.H., Araya R., Modeling a mixed-integer-binary small-population evolutionary particle swarm algorithm for solving the optimal power flow problem in electric power systems, Applied Soft Computing, vol. 13, pp. 3839–3852 (2013).
  • [18] Roa-Sepulveda C.A., Pavez-Lazo B.J., A solution to the optimal power flow using simulated annealing, Electrical Power and Energy Systems, vol. 25, no. 1, pp. 47–57 (2003).
  • [19] Bakistzis A.G., Biskas P.N., Zoumas C.E., Petridis V., Optimal power flow by enhanced genetic algorithm, IEEE Transactions on Power Systems, vol. 17, no. 2, pp. 229–236 (2002).
  • [20] Kumari M.S., Maheswarapu S., Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution, Electrical Power and Energy Systems, vol. 32, pp. 736–742 (2010).
  • [21] Allaoua B., Laoufi A., Optimal power flow solution using ant manners for electrical network, Advances in Electrical and Computer Engineering, vol. 9, pp. 34–40 (2009).
  • [22] Khorsandi A., Hosseinian S.H., Ghazanfari A., Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem, Electric Power System Research, vol. 95, no. 2, pp. 206–213 (2013).
  • [23] Sood Y.R., Evolutionary programming based optimal power flow and its validation for deregulated power system analysis, Electrical Power and Energy Systems, vol. 29, no. 1, pp. 65–75 (2007).
  • [24] Reddy S.S., Rathnam C.S., Optimal Power Flow using Glowworm Swarm Optimization, International Journal of Electrical Power & Energy Systems, vol. 80, pp. 128–139 (2016).
  • [25] Chaib A.E., Bouchekara H.R.E.H., Mehasni R., Abido M.A., Optimal power flow with emission and non-smooth cost functions using backtracking search optimization algorithm, International Journal of Electrical Power & Energy Systems, vol. 81, pp. 64–77 (2016).
  • [26] Pandiarajan K., Babulal C.K., Fuzzy harmony search algorithm based optimal power flow for power system security enhancement, International Journal of Electrical Power & Energy Systems, vol. 78, pp. 72–79 (2016).
  • [27] Sivasubramani S., Swarup K.S., Multi-objective harmony search algorithm for optimal power flow problem, Electrical Power and Energy Systems, vol. 33, pp. 745–752 (2011).
  • [28] El-Fergany A.A., Hasanien H.M., Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms, Electric Power Components and Systems, vol. 43, no. 13, pp. 1548–1559 (2015).
  • [29] Niknam T., Nariman M., Jabbari M., Malekpour A.R., A modified shuffle frog leaping algorithm for multi-objective optimal power flow, Energy, vol. 36, pp. 6420–6432 (2011).
  • [30] Haghighi A.S., Seifi A.R., Niknam T., A modified teaching–learning based optimization for multiobjective optimal power flow problem, Energy Conversion and Management, vol. 77, pp. 597–607 (2014).
  • [31] Mahdad B., Srairi K., Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm, Applied Soft Computing, vol. 46, pp. 501–522 (2016).
  • [32] Zhang J., Tang Q., Li P., Deng D., Chen Y., A modified MOEA/D approach to the solution of multiobjective optimal power flow problem, Applied Soft Computing, vol. 47, pp. 494–514 (2016).
  • [33] Mukherjee A., Roy P., Mukherjee V., Transient stability constrained optimal power flow using oppositional krill herd algorithm, International Journal of Electrical Power & Energy Systems, vol. 83, pp. 283–297 (2016).
  • [34] Daryani N., Hagh M.T., Teimourzadeh S., Adaptive group search optimization algorithm for multiobjective optimal power flow problem, Applied Soft Computing, vol. 38, pp. 1012–1024 (2016).
  • [35] Askarzadeh A., A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm, Computers and Structures, vol. 169, pp. 1–12 (2016).
  • [36] Abido M.A., Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem, IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 315–329 (2006).
  • [37] Askarzadeh A., Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology, IET Generation, Transmission & Distribution, pp. 1–8 (2016).
  • [38] Zhao B., Guo C., Cao Y., Improved particle swarm optimization algorithm for OPF problems, IEEE PES Power Systems Conference and Exposition, pp. 233–238 (2004).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af527a85-4cd8-4862-91f3-0bb0b9f2049f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.