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Abstract. Radar Target Detection (RTD) is a critical aspect of modern radar systems that have widespread use in both civil and military fields. 
However, detecting targets in clutter and unfavorable conditions is challenging with conventional signal processing approaches such as Constant 
False Alarm Rate (CFAR). The harsh and complex environments in radar measurements make the target detection problem even more challenging 
when using traditional methods. Therefore, developing a reliable and robust RTD technique is crucial. This paper proposes an approach that 
incorporates Machine Learning (ML) with conventional methods to detect, separate, and classify real targets from noisy backgrounds in a real radar 
dataset by employing Fuzzy C-means (FCM) clustering to segment the Range Doppler Map (RDM) image into targets and background, then a 
feature extraction technique based on gray-level co-occurrence matrix (GLCM) and classify the targets using a support vector machine (SVM). The 
approach is based on an augmented Doppler Filter Bank (DFB) with RDM images and has been tested on a Frequency Modulated Continuous 
Wave (FMCW) radar mounted on an Unmanned Aerial Vehicle (UAV) for detecting ground targets. A flight was conducted in a challenging 
environment to evaluate the proposed system's performance. The experimental results demonstrate that the proposed approach outperforms 
existing methods in terms of classification accuracy. The proposed approach is also computationally efficient and can be easily implemented in real-
time systems and has great potential in improving RTD performance in various applications. 
 
Streszczenie. Radarowe wykrywanie celów (RTD) to krytyczny aspekt nowoczesnych systemów radarowych, które są szeroko stosowane zarówno 
w zastosowaniach cywilnych, jak i wojskowych. Jednak wykrywanie celów w bałaganie i niesprzyjających warunkach jest trudne przy 
konwencjonalnych metodach przetwarzania sygnału, takich jak stała częstość fałszywych alarmów (CFAR). Trudne i złożone środowiska w 
pomiarach radarowych sprawiają, że problem wykrywania celu staje się jeszcze większym wyzwaniem przy użyciu tradycyjnych metod. Dlatego 
kluczowe znaczenie ma opracowanie niezawodnej i solidnej techniki BRT. W tym artykule zaproponowano podejście, które łączy uczenie 
maszynowe (ML) z konwencjonalnymi metodami wykrywania, oddzielania i klasyfikowania rzeczywistych celów z hałaśliwego tła w prawdziwym 
zbiorze danych radarowych poprzez zastosowanie klastrowania rozmytych średnich C (FCM) w celu segmentacji mapy Range Doppler (RDM) ) na 
cele i tło, a następnie technikę ekstrakcji cech opartą na macierzy współwystępowania na poziomie szarości (GLCM) i klasyfikować cele za pomocą 
maszyny wektorów nośnych (SVM). Podejście to opiera się na rozszerzonym banku filtrów dopplerowskich (DFB) z obrazami RDM i zostało 
przetestowane na radarze fali ciągłej z modulacją częstotliwości (FMCW) zamontowanym na bezzałogowym statku powietrznym (UAV) w celu 
wykrywania celów naziemnych. Przeprowadzono lot w trudnym środowisku, aby ocenić wydajność proponowanego systemu. Wyniki eksperymentów 
pokazują, że proponowane podejście przewyższa istniejące metody pod względem dokładności klasyfikacji. Proponowane podejście jest również 
wydajne obliczeniowo i może być łatwo zaimplementowane w systemach czasu rzeczywistego oraz ma ogromny potencjał w zakresie poprawy 
wydajności RTD w różnych zastosowaniach. (Bank rozszerzonych filtrów Dopplera umożliwiający lepsze wykrywanie celów w oparciu o 
uczenie maszynowe) 
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Słowa kluczowe: bank filtrów dopplerowskich, detektor ruchomych celów, przetwarzanie sygnału radarowego, rozmyty klaster c-średnich, 
maszyna wektorów nośnych. 
 
 

Introduction 
     In the past decade, radar technology has become 
increasingly important for detection and tracking purposes 
across a wide range of applications. Radars have the 
unique ability to operate with reasonable precision under 
diverse weather conditions and provide valuable information 
about the range, azimuth, height, and speed of targets. As a 
result, modern radar systems have been developed to meet 
the increasing demand for superior performance in various 
civil applications, including automotive radar, air traffic 
control, aircraft navigation, remote sensing, ship navigation 
and safety, law enforcement, and many other fields. 
     In addition to civil applications, radar technology has 
also found widespread use in agricultural, forestry, soil 
moisture monitoring, geology, geomorphology, and 
hydrology, as well as in oceanography, land use, and land 
cover mapping. However, radar systems have also been 
widely employed in military applications such as land-based 
air defense radar, missile control radar, airborne fire-control 
radar, airborne surveillance radar, coastal and naval 
surveillance, and navigation radar. 
     Overall, the development and advancement of radar 
technology has enabled its adoption in diverse applications, 
from civilian to military, making it a vital tool in various fields 
that rely on precise and accurate detection and tracking [1]. 
Despite the ability of radars to operate in severe and 
diverse environmental conditions, their measurement 
accuracy can still be affected by several factors. These 
include harsh environments, the maneuverability of moving 

targets under strong clutter and interference conditions, and 
targets with low signal-to-noise ratio. Thus, there is a 
considerable need to develop efficient and robust 
approaches for detecting and classifying moving targets. In 
response, various algorithms and approaches have been 
developed over the years to overcome the limitations 
associated with radar measurements and improve the 
probability of detecting moving targets. 
     The detection of radar targets and extraction of 
information from their echo signals is a commonly used 
technique to identify the desired target among the complex 
and noisy background. The reflected signals from the target 
are often buried within a mixture of noise, clutter, and 
jamming, making it necessary to employ techniques such 
as RTD to extract useful information. Digital signal 
processing is a crucial element of RTD, as it helps to 
distinguish between stationary and moving targets, utilizing 
tools such as Moving Target Detector (MTD) [2]. 
     The MTD is a crucial aspect of RTD, which utilizes digital 
signal processing to differentiate between stationary and 
moving targets. The MTD relies heavily on the DFB, which 
comprises a collection of filters used for detecting targets. 
Incoming radar signals are received from various sources 
and sorted in the DFB based on their Doppler frequency. 
Typically, DFBs are constructed using the Fast Fourier 
Transform (FFT) algorithm, and their filters are designed to 
pass narrowband frequencies based on the number of 
samples in the received signal. 
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After the MTD, CFAR is applied to detect actual targets by 
comparing the sample value with a threshold at each Pulse 
Repetition Interval (PRI). The threshold is estimated based 
on some a priori knowledge about the clutter situations. The 
accuracy of CFAR is determined by the statistical properties 
of the signal and the probability of detection. The 
effectiveness of the radar is determined by its probability of 
detection and the probability of false alarms. 
     Many researchers have explored the use of ML 
techniques to develop intelligent signal processing methods 
for target detection. These algorithms aim to integrate radar 
measurements and parameters with various ML 
approaches, including Decision Tree (DT), Random Forest 
(RF), SVM, and empowerment techniques. Additionally, 
automatic feature learning methods such as Deep Learning 
(DL), Deep Belief Networks (DBN), Feed Forward Neural 
Networks (FNN), Deep Reinforcement Learning (DRL), 
Auto Encoder (AE), Long-Short Term Memory (LSTM), 
Recurrent Neural Networks (RNN), Convolutional Neural 
Networks (CNN), and Generative Adversarial Networks 
(GAN) are employed. The ultimate goal of these techniques 
is to improve the target detection process by using a variety 
of strategies [3,4]. 
While ML and DL techniques have shown great potential in 
improving the probability of detection and reducing false 
alarm rates in modern radar systems compared to 
traditional signal processing methods, the accuracy of these 
models is still dependent on the amount of training data. 
Additionally, the complexity of these models can increase 
the processing time required for target detection [5]. 
     The objective of this study is to propose a robust and 
efficient system that can overcome the limitations of both 
conventional and combined RTD techniques with various 
ML algorithms. The proposed system offers several key 
contributions. Firstly, it enhances the probability of detecting 
the desired targets and decreases the false alarm rate 
when compared to the CFAR detector, through the use of 
ML algorithms. 
     In this paper, we propose an augmented DFB approach 
for RTD that utilizes image processing techniques for RDM 
segmentation and feature extraction, followed by target 
classification using SVMs. Specifically, the proposed 
approach uses FCM clustering to segment the RDM image 
into targets and background, and GLCM to extract texture 
features of the segmented targets. The SVM classifier is 
then trained on the extracted features to classify the targets 
accurately. 
     This paper is organized as follows: In Section 2, we 
review related works in the field of RTD. Section 3 presents 
the proposed augmented DFB approach for RTD. Section 4 
describes the experimental setup and results. Finally, 
Section 5 concludes the paper and discusses future 
directions for research in this area.  
 
Related Work on Radar Target Detection 
     Echo signals received by a radar system are often 
accompanied by noise, clutter, and jamming. During radar 
signal processing, various techniques such as matched 
filtering, DFB, zero velocity filter, and CFAR detection are 
employed to process the reflected signals. In order to 
achieve high-range resolution and a narrow pulse width, the 
radar signal is sampled at a specific rate and then 
compressed using a matched filter. Doppler processing is 
then applied to multiple pulses at each range unit to obtain 
the Range-Doppler spectrum maps. The CFAR detector is 
used to determine which Range-Doppler signal has higher 
energy than the detection threshold by analyzing the 
reflected signal amplitude stored in separate cells. Zero 
velocity filters are used to isolate low Doppler targets and 

clutter, and a clutter map and threshold detector are then 
applied to the output. Finally, the velocity and position of the 
target can be determined. 
     The conventional method uses statistical hypothesis 
testing to set an adaptive detection threshold that adjusts 
based on the levels of noise and clutter energy. 
Consequently, setting the threshold too low results in more 
targets being detected, but also increases false alarms. 
Conversely, if the threshold is set too high, the number of 
false alarms is expected to decrease, but fewer targets will 
be detected. Most CFAR schemes use statistical hypothesis 
testing to set the adaptive detection threshold based on the 
levels of noise and clutter energy. However, to estimate the 
level of background noise around the Cell Under Test 
(CUT), cells immediately adjacent to the CUT, known as 
guard cells, are excluded from the calculation. The local 
power level is estimated by slightly increasing the average 
power level, allowing for the limited sample size, and 
forming the threshold level. If the signal in the CUT exceeds 
the threshold and is greater than all of its adjacent cells, it is 
considered an object. This straightforward method is 
referred to as Cell-Averaging CFAR (CA-CFAR), while other 
approaches use the Greatest-Of (GO-CFAR) or Smallest-Of 
(SO-CFAR) to define the local threshold.  
     However, CFAR may not perform well in two scenarios. 
The first is when the clutter power suddenly changes within 
a signal, known as clutter edges, which can lead to 
performance decay and increased false alarms. The second 
scenario occurs when more than one object is present, 
causing the threshold level to rise and leading to the 
masking effect, where the weak echoes of distant targets 
are missed by the primary object [6]. 
     Researchers have recently explored various ML-based 
approaches for target detection. For instance, Hu and Qi 
developed an adaptive detector that uses a neural network-
based approach to determine the appropriate CFAR for the 
estimated environment [7]. Khalid et al. researched radar 
Range-Doppler for automatic target recognition using 
Convolutional Long Short-Term Memory (CLSTM) [8]. 
Akhtar and Olsen trained an Artificial Neural Network (ANN) 
using a Cell-Averaging CFAR (CA-CFAR) and fixed the 
errors of the CA-CFAR to achieve a lower false alarm rate 
[9]. Thornton used neural networks to solve the radar clutter 
classification problem [10]. Numerous research has been 
developed over time to exploit convolutional neural 
networks for the sake of radar target identification in 
complex, nonstationary, and cluttered scenes. A signal 
detector has been developed based on a joint time-
frequency analysis of radar imagery for target detection 
[11,12]. 
     Although these ML and DL methods have benefited over 
traditional radar signal processing techniques to improve 
the probability of detection and reduce the false alarm rate, 
their accuracies are affected by the amount of training data. 
Moreover, the complexity of such trained models increases 
the time required to detect targets [13,14]. A CNN detector 
for single targets in homogeneous interference was 
developed by Yavuz et al [15]. Akhtar et al. presented an 
ANN-CFAR detector that can detect fluctuating targets in 
noisy backgrounds. Clutter detection is more common but 
more challenging than detecting targets within noise 
backgrounds [16]. 
 

System Overview 
     This section presents the hardware setup for the 
proposed system, which aims to address the limitations of 
conventional signal processing techniques and improve 
RTD by separating noisy background from desired echo 
signals. Fig. 1 illustrates the block diagram of the proposed 
system. 
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Fig.1. RTD system block diagram 
 
Hardware Setup 
     The proposed augmented DFB system utilizes an 
FMCW radar with an operational frequency of 24 GHz. This 
radar has an accuracy of +/- 10 degrees in the elevation 
plane and +/- 15 degrees in the azimuth plane, with a 
resolution of 0.1 degrees. It consists of one transmitter and 
three receiver microstrip patch antennas and has a 
detection range of up to 100 meters for people and 300 
meters for vehicles, with a resolution of 1 meter. 
     To control the quadcopter, a Pixhawk-2 autopilot is 
employed, which is equipped with several sensors, 
including an MS5611 barometer, a U-Blox GPS, and an 
InvenSense MPU-6000 MEMS IMU. The maximum useful 
payload of the quadcopter is 420g. During the experiments, 
the payload includes the radar system located at the belly of 
the UAV, which is connected to a BULLET-M, 2.4 GHz 
28dBm transmitter with an Omni-directional antenna 
(BM2HP by Ubiquity) through ethernet. The transmitter and 
the radar are powered by a 3S Lipo battery, separate from 
the quadcopter battery. To receive the data from the radar, 
a Nano Station-M with a directive panel antenna and dual-
polarity is connected to the ground station, as shown in Fig. 
2. This setup aims to address the challenges associated 
with conventional signal processing techniques and improve 
the RTD by separating the noisy background from the 
desired echo signals. 

Fig.2. Hardware setup configuration 
 
Radar Data Acquisition 
     During the flight, a micro-radar attached to a UAV emits 
a frequency-modulated sawtooth chirp to detect moving 
targets. The frequency at which the radar transmits (𝑓ோி ்) 
can be expressed as a function of time as the chirp sweeps 
across ground objects: 

(1)      𝑓ோி ் ൌ 𝑓ୡ  𝛼 𝑡       , 0  𝑡 ൏  𝑇                                 

(2)     𝛼 ൌ


்
            

     The carrier frequency of the radar is represented by 𝑓, 
𝛼 denotes the frequency sweep rate, 𝐵 is the bandwidth of 
the transmitted chirp signal, and 𝑇 is the duration of 
frequency sweep. The emitted signals are directed towards 
the target, and the reflected signals are received by the 
radar after a propagation time delay ∆𝑡, along with a small 
frequency shift ∆𝑓 between the two transmitted frequencies. 
These time and frequency shifts occur due to the 
propagation effects over the range. The propagation delay 
time between the transmitted and received signals can be 
expressed as: 

(3)                                ∆𝑡 ൌ 2
ୖ


 

Where R is the range between the radar antenna and each 
scattered inside the beam width of the radar, and c is the 
speed of light. The frequency of the received signal is 
shifted by a time delay ∆𝑡, which can be expressed as: 
(4)              𝑓ோி ோ ൌ 𝑓ୡ  𝛼 ∗ ሺ𝑡 െ ∆𝑡ሻ  , ∆𝑡  𝑡 ൏ 𝑇  ∆𝑡          
Afterwards, the received signal is combined with the 
transmitted signal and then filtered through a low-pass filter 
to extract the video signal 𝑥ሺ𝑡ሻ which has a low beat 
frequency 𝑓, given by: 
(5)                               𝑓 ൌ 𝛼 ∗ ∆𝑡                                     
By substituting from Eqn. (2,3) in Eqn. (5), 𝑓 can be 
rewritten as: 

(6)                               𝑓 ൌ


்
∗ 2

ோ


                                       

The phase changes of the video signal x(t) are used to 
extract the Doppler frequency 𝑓ௗ, which provides 
information about the velocity of the target. The FMCW 
radar used in this study has a repetition rate of 12.150 kHz 
for the transmitted chirps and takes 256 sampling points per 
chirp at a sample rate of 264 ns. 
The MTD signal processor uses a bank of Doppler filters as 
its core to reduce clutter and noise. This filter bank is 
implemented using the FFT algorithm. 
      After digitizing the received radar signal with an A/D 
converter, a baseband signal is generated. The proposed 
system's algorithms for target decision-making are based 
on FFT after Range-Doppler processing. The first step in 
processing the received signal is to perform an FFT to 
determine range information over the "fast time" for each 
sample. This process is repeated for each chirp that forms a 
frame. Once all chirps in a frame are processed, a Doppler-
FFT is performed to determine the target's velocity, which is 
evaluated once per frame every N chirps in what is known 
as "slow time." The third dimension of the radar cube 
contains spatial information about the target's position, 
which is derived from the combined spatial information 
along all channels. 
     Once the received signals from the three antennas have 
been Fourier transformed, a mean Range-Doppler Map 
(RDM) is produced by averaging the RDM obtained from 
each antenna. The resulting map has 256x256 pixels, with 
each pixel assigned a 32-bit amplitude value. The horizontal 
axis of the RDM image represents the velocity 
measurements, while the vertical axis shows the range 
measurements. Each pixel of the RDM contains a 32-bit 
value that represents the intensity of the received signals 
from the different earth scatters. Figure 3 displays the RDM 
image. 
     The map is obtained by connecting to the radar through 
Ethernet, after the signal processing described above is 
performed inside the radar. This resulting image is then 
utilized for the purpose of target detection [17,18]. 
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Fig.3. Reflected ground signals in the RDM image 

Target Detection 
     The proposed methodology comprises several key 
stages, including enhancement, clustering, feature 
extraction, and the use of an SVM classifier with RDM 
images. The experiment was conducted on a dataset 
containing 510 RDM images using MATLAB (R2022a). 
 
Pre-processing 
     Image enhancement preprocessing involves a set of 
techniques utilized to enhance the quality or clarity of an 
image before further analysis or processing. The main 
objective of image enhancement is to make the image 
easier to interpret or extract features from, while preserving 
its original content and structure. It is an essential step in 
improving the quality and usability of digital images, as 
illustrated in Figure 4. 
 

 
Fig.4. Enhanced RDM image 
 
Some of the techniques used in image enhancement 
preprocessing include: 
- Image resizing: This technique changes the size of an 

image, which can be useful for adjusting the resolution 
or aspect ratio to match specific requirements. 

- Contrast enhancement: This technique adjusts the 
brightness and contrast of an image to improve the 
visibility of details that may be difficult to see in low 
contrast or dimly lit images. 

- Sharpening: This technique enhances the edges of 
objects in an image to make them appear more distinct 
and clearer. 

- Noise reduction: This technique removes unwanted 
noise or artifacts from an image, which can be caused 
by low light conditions or sensor limitations. 

 
Segmentation 
     Bezdek proposed the FCM clustering algorithm, which is 
primarily used for pattern recognition. FCM allows a pixel to 

belong to more than one cluster, and its goal is to divide a 
given dataset into a positive number of clusters based on 
two parameters. In the context of RDM image 
segmentation, FCM was employed to identify the target 
region in RDM images. The FCM clustering method yielded 
satisfactory segmentation results [19]. 
     The FCM clustering algorithm allows pixels to belong to 
multiple categories by utilizing fuzzy memberships. Let 
𝑋𝑧 ൌ  ሺ𝑥1, 𝑥2, . . . , 𝑥𝑁ሻ  denote an image with 𝑁 pixels that 
needs to be separated into c clusters, where 𝑋𝑖 represents 
feature data. The algorithm is an iterative optimization 
process that aims to minimize the cost function, which is 
defined as: 
(7)               𝐽 ൌ  ∑𝑁𝑗 ൌ 1 ∑𝐶𝑖 ൌ 1 𝑢𝑖𝑗𝑚 ‖𝑥𝑗 െ  𝑣𝑖 ‖^2           
Here, the summation is over all 𝑁 pixels and all c clusters, 
𝑢𝑖𝑗 represents the degree of membership of pixel 𝑗 to 
cluster 𝑖, and 𝑣𝑖 represents the centroid of cluster 𝑖. The 
cost function measures the similarity between each pixel 
and its assigned cluster centroid. The algorithm iteratively 
updates the membership degrees and cluster centroids until 
convergence is achieved. 
      In the FCM algorithm, the probability is determined 
based on the distance between each pixel and every 
individual cluster in the feature domain. The membership 
functions and cluster centers are updated through the 
following process: 
1. Initialization: Set the number of clusters (c), the 

fuzziness parameter (m), and the initial cluster centers 
(u). 

2. Membership Function Update: Calculate the 
membership value of each data point for each cluster 
using the following equation: 

3. membership value of point i to cluster j = 1 / sum of 
(distance from point i to all clusters / distance from 
point i to cluster j) ^(2/(m-1)) where distance from 
point i to cluster j is the Euclidean distance between 
the data point i and the cluster center j. 

4. Cluster Center Update: Calculate the new cluster center 
for each cluster using the following equation: 

new cluster center of cluster j = sum of (membership 
value of point i to cluster j) ^m * point i / sum of 
(membership value of point i to cluster j) ^m 

5. Check for Convergence: Calculate the objective function 
J, which measures the total distance between the data 
points and the cluster centers weighted by the 
membership values. If J does not change significantly 
between iterations, the algorithm has converged. 

6. Repeat steps 2-4 until convergence. 
The membership functions and cluster centers are updated 
in each iteration of the FCM algorithm until convergence. 
The membership functions determine the degree of 
association of each data point with each cluster, and the 
cluster centers represent the mean value of all data points 
associated with the corresponding cluster [20]. 
     This paper utilizes an algorithm for morphological 
operations based on set dilation. The result is that the target 
region is converted to binary 1, while the rest of the image 
is converted to 0. This step is more powerful than other 
techniques as it can modify and improve the visual features 
of an image. Dilation involves convolving a structuring 
element with the input image. The structuring element is a 
small binary image that defines the shape and size of the 
dilation operation. For each pixel in the input image, the 
dilation operation replaces the pixel value with the 
maximum pixel value within the neighborhood defined by 
the structuring element. This has the effect of expanding 
bright regions and filling in dark regions in an image. 
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      Figure 5 depicts the RDM image after being segmented 
using the FCM clustering algorithm and applying 
morphological operations based on set dilation. The image 
has been partitioned into several regions based on the 
range and Doppler information of each pixel. Each region is 
assigned a unique label that distinguishes it from the other 
regions. The segmentation results demonstrate the 
effectiveness of the C-mean clustering algorithm in 
accurately grouping the pixels into clusters based on their 
similarity. This information can be further analyzed to 
identify and track targets in the radar image. 

Fig.5. Segmented image Using FCM Clustering Algorithm 
 
Feature Extraction 
     The GLCM was first introduced in 1973 by Haralick, 
Shanmugam, and Dinstein. GLCM feature extraction is a 
prevalent technique in image processing that involves 
analyzing the texture properties of an image using statistical 
measures derived from the GLCM. The GLCM is a matrix 
that summarizes the frequency of pairs of pixel intensities 
occurring in an image in a particular direction and distance. 
Various statistical measures can be derived from the GLCM 
to describe the texture of the image, which can be used as 
features for image classification or other applications [21]. 
The process of GLCM feature extraction typically involves 
the following steps: 
• The GLCM is calculated based on the pixel intensities of 

the preprocessed image using a specified distance and 
direction. 

• The GLCM is usually normalized to ensure that the 
derived features are scale-invariant and do not depend 
on the absolute intensity values of the image. 

• Various statistical measures can be derived from the 
normalized GLCM to describe the texture properties of 
the image. Some commonly used measures include 
shape, color, image intensity, texture, contrast, 
homogeneity, correlation, and energy [22]. 

The selected GLCM features are then used as input to a 
classification algorithm, such as SVM, to classify the image 
into different categories. 
      
Classification 
     The SVM algorithm was originally developed in 1963 by 
Vapnik and Lerner and is a binary classifier that employs 
supervised learning to provide superior results compared to 
other classifiers [5]. This method of classification is a form 
of supervised learning. SVM distinguishes between two 
classes by constructing a hyperplane in high-dimensional 
feature space, which can be used for classification 
purposes. SVM is an algorithm for classification that is 
based on various kernel methods. The concept of decision 
planes forms the basis for SVM. A decision plane is used to 
separate a group of items with differing class membership. 
In this study, the SVM technique was used to classify and 
detect target. Here are the steps involved in using SVMs to 
classify an RDM image: 

• Data Preparation: First, the RDM image is preprocessed 
to extract relevant features. These features are then 
used as input to the SVM algorithm. 

• Feature Selection: The extracted features are then 
selected based on their relevance to the classification 
task. This step is important to reduce the dimensionality 
of the input data and avoid overfitting. 

• Training: In the training phase, the SVM algorithm uses 
the selected features to learn a decision boundary that 
separates the different classes in the data. The 
decision boundary is defined by a hyperplane in a high-
dimensional feature space. 

• Optimization: The SVM algorithm seeks to optimize the 
hyperplane such that the margin, i.e., the distance 
between the hyperplane and the closest points of each 
class, is maximized. This helps to ensure that the SVM 
model is robust to noise and can generalize well to new 
data. 

• Classification: In the classification phase, the SVM 
algorithm uses the learned decision boundary to 
classify new RDM images based on their extracted 
features.  

The SVM algorithm assigns a class label to the new image 
based on which side of the hyperplane it falls on [23]. 
The classification rule for SVM can be expressed as 
follows: 
(8)               𝑓ሺ𝑥ሻ  ൌ  𝑠𝑖𝑔𝑛 ሺ∑ᵢ 𝛼ᵢ 𝑦ᵢ 𝐾 ሺ𝑥ᵢ, 𝑥ሻ    𝑏ሻ                    
where 𝑥 is the feature vector of the RDM image, 𝛼 is a 
vector of Lagrange multipliers obtained during training, 𝑦 is 
the vector of class labels, 𝐾 is a kernel function that maps 
the input data into a high-dimensional feature space, and 𝑏 
is the bias term. 
The SVM algorithm seeks to find the values of α and b that 
minimize the following objective function: 
(9)                    𝑚𝑖𝑛 ½ ||𝛼||²   𝐶 ∑ᵢ 𝜉ᵢ                                    
subject to: 
(10)               𝑦ᵢ ሺ∑ᵢ 𝛼ᵢ 𝑦ᵢ 𝐾 ሺ𝑥ᵢ, 𝑥ሻ    𝑏ሻ    1 െ  𝜉ᵢ             
                                   𝜉ᵢ   0 
where 𝐶 is a regularization parameter that controls the 
trade-off between the margin and the classification error, 
and 𝜉ᵢ are slack variables that allow for misclassifications. 
The SVM algorithm seeks to find the values of 𝛼 and 𝑏 that 
minimize the objective function subject to the constraints 
above. 

 
Fig.6. Target detection and classification using FCM Clustering 
Algorithm and SVM classifier 

 
Fig.7. False alarm detection and classification using FCM 
Clustering Algorithm and SVM classifier  
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      The SVM classifier depicted in figures 6 and 7 
determines whether the target is present in the RDM image 
or not. In classification, the SVM algorithm assigns a test 
sample to a particular class based on the classification 
used. 
 
Experimental Results 
     To evaluate the effectiveness of the proposed 
augmented DFB method compared to conventional DFB 
with the CFAR detector, a real-world flight using a Solo 
Quadcopter was conducted over a farm containing various 
objects at different altitudes such as houses, hangars, 
trees, grass, and cars.     The UAV was equipped with a 
Pixhawk-2 autopilot system that includes an InvenSense 
MPU-6000 MEMS Inertial Measurements Unit (IMU), a U-
Blox GPS, and an MS5611 barometer, which were used for 
positioning and localization. The radar was mounted on the 
underside of the UAV and tilted at a 60-degree angle 
towards the ground to detect ground scatters. The flight 
path consisted of 18 waypoints and lasted for a total of 393 
seconds, with a maximum speed of 5m/s, as shown in 
Figure 8. 
 

Fig.8. UAV flight trajectory 
 
     The CFAR technique is commonly used for detecting 
radar targets by distinguishing relevant information from 
background noise. It works by dynamically estimating the 
threshold power level and identifying targets when the echo 
signal exceeds it. In this approach, the power of the CUT is 
compared with the power of its surrounding cells 
(background). Although CFAR is a useful method for many 
applications, including airborne and ground-based radars, it 
is not suitable for the proposed system as it is unable to 
differentiate ground scatters from RDMs due to their similar 
power levels. An illustration of CFAR-detected targets in the  
RDM image is presented in Fig. 9, where some of the 
ground objects have been detected while others have been 
missed. 

 
Fig.9. RDM image with CFAR target detection 
 

     Furthermore, CFAR encountered a significant false 
target (noise) with a high power level relative to its 
background. The first obstacle arises when estimating the 
power level of the CUT from areas with actual ground 
scatter while inside a CUT area with a surrounding 
background. Because the CUT's power level is identical to 
its neighboring cells, CFAR fails to detect all targets in this 
situation. The second issue arises due to random noise with 
a relatively high power level compared to its local 
neighborhood. To address these challenges in complex and 
noisy environments, an alternative system based on ML 
algorithms (Augmented DFB) has been proposed, unlike 
CFAR, which relies on local neighborhood cells to detect 
targets. 
      In this paper, SVM technique with FCM Clustering is 
used for segmentation and classification of RDM images. 
Real data set of 510 RDM images have been used to detect 
'target' and 'false alarm'. The RDM images are segmented 
with FCM Clustering algorithm and Morphological 
operations and gray level co-occurrence matrix for feature 
extraction. The SVM classifier is trained using 450 RDM 
images, after that the remaining 60 RDM images was used 
for testing the trained SVM. Once the SVM is trained, the 
classification accuracy is validated using the testing set. 
     The texture analyses for the samples have been 
performed, and their values are tabulated in table 1. 
From the table1 it has been inferred that the feature values 
obtained from the sample images are well within the 
acceptable range present in the literature. 
 
Table 1. Textural features analysis for three samples of RDM 
images 

samples Sample1 Sample 2 Sample 3 

contrast 0.2401 2.9354 1.3548 

correlation 0.8822 0.4905 0.8086 

Energy 0.3180 0.2487 0.3071 

Entropy 1.3967 1.6784 1.4559 

Homogeneity 0.9475 0.7959 0.9215 

Variance 51.4554 32.7890 38.7397 

Dissimilarity 0.1308 0.8762 0.3597 

 

     Table.2 provides a comparison of accuracy for SVM 
Kernel functions classifier result. The results demonstrate 
the ability of the proposed system to detect target from 
background noise. From the Table 2 and it has been 
concluded that the accuracy is in high range with linear 
SVM Kernel function classification when compared to 
Quadratic and Polynomial SVM Kernel function 
classification, which reveals that proposed method works 
well for all the images. 
 
Table 2. CLASSIFICATION PERFORMANCES OF THE SVM 
CLASSIFIER 

 
Conclusion 
     Target detection is an essential part of modern radar. 
This paper proposes an alternative system to replace an 
important processing part of conventional radar signal 
processing hypothesis testing. The main aim of the 
proposed system is to enhance the probability of detection 
by improving the accuracy of detected targets in high-clutter 

No. 
SVM classifier result 

Kernel function accuracy 
1 Linear 92.879% 
2 Quadratic 82.538% 
3 Polynomial 86.927% 
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environments over the conventional DFB with the CFAR 
detector. This goal has been achieved by employing a 
series of algorithms such as FCM, GLCM, and SVM. SVM 
proved to be a robust classifier for binary classification, 
achieving high accuracy and outperforming other classifiers 
in some cases. GLCM provided useful texture information 
and was able to discriminate between different land cover 
types. FCM was effective in segmenting the image into 
distinct regions based on spectral similarity. The proposed 
combination of these three methods provided a 
comprehensive approach to target extraction that takes into 
account both spectral and spatial features. The results 
showed that this hybrid approach was able to accurately 
extract targets from the imagery, even in complex 
environments with high levels of noise and variability. The 
experimental results demonstrate the proposed system's 
enhancing the accuracy rate of target detection to 92.879%. 
 
Authors: dr Mostafa M. Mostafa, Electronics and Electrical 
Communications Engineering Dept., Air Defense Collage, 
Alexandria, Egypt, Mahmoud Shaker, Electronics and Electrical 
Communications Engineering Dept., Air Defense Collage, 
Alexandria, Egypt, dr Shady Zahran, Department of Geomatics, 
University of Calgary, Calgary, Canada, prof. dr Mohamed EL-Said 
Nasr, Electronics and Electrical Communications Engineering 
Dept., Faculty of Engineering, Tanta University, Tanta 31527, 
Egypt, dr Azhar A. Hamdi, Department of Electronics and 
Communication, Zagazig University, Egypt. E-mail: 
mahmoudshaker037@gmail.com  

 
REFERENCES 

[1]  T. Long, Z. Liang and Q. Liu, “Advanced technology of high-
resolution radar: Target detection, tracking, imaging, and 
recognition,” Science China. Inf. Sci, vol. i62 (4), no. i40301 
pp. 1–26,2019. 

[2]  F. Gini, ‘‘Grand challenges in radar signal processing,’’ 
Frontiers Signal Process., vol. 1, pp. 1–6, 2021. 

[3]  E. Mason, B. Yonel and B. Yazici, ‘‘Deep learning for radar,’’ in 
Proc. IEEE Radar Conf. (RadarConf), Seattle, WA, USA, pp. 
i1703–1708, 2017. 

[4]  L. Wang, J. Tang and Q. Liao, “A study on radar target 
detection based on deep neural networks,” IEEE Sensors 
Letters, vol. 3, no. 3, pp. 1–4, 2019. 

[5]  P. Lang, X. Fu, M. Martorella, J. Dong, R. Qin et al., ‘‘A 
comprehensive survey of machine learning applied to radar 
signal processing,’’ arXiv :2009.13702, 2020. 

[6]  J. R. Machado-Fern´andez, N. Mojena-Hern´andez, and J. d. l. 
C.Bacallao-Vidal, “Evaluation of cfar detectors performance,” 
Iteckne,vol. 14, no. 2, pp. 170–178, 2017. 

[7]  Q. Qi and W. Hu, “One efficient target detection based on 
neural network under homogeneous and non-homogeneous 
background,” Inter-national Conference on Communication 
Technology Proceedings, ICCT, Chengdu, China, vol. 2017, 
pp. 1503–1507, 2018. 

[8]  H. Khalid, S. Pollin, M. Rykunov, A. Bourdoux and H. Sahli, 
“Convolutional Long Short-Term Memory Networks for 
Doppler-Radar based Target Classification,” In Proceedings of 

the 2019 IEEE Radar Conference, Boston, MA, USA, pp. 22–
26, 2019. 

[9]  J. Akhtar and K. E. Olsen, “Go-cfar trained neural network 
target detectors,” in 2019 IEEE Radar Conference 
(RadarConf), Boston, MA, USA, pp. 1–5, 2019. 

[10]   C. E. Thornton, M. A. Kozy, R. M. Buehrer, A. F. Martone and 
K. D. Sherbondy, ‘‘Deep reinforcement learning control for 
radar detection and tracking in congested spectral 
environments,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6, 
no. 4, pp. 1335–1349, 2020. 

[11]   [14] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu 
and F. Fraundorfer, ‘‘Deep learning in remote sensing: A 
comprehensive review and list of resources,’’ IEEE Geosci. 
Remote Sens. Mag., vol. 5, no. 4, pp. 8–36, 2017. 

[12]   L. Zhang, L. Zhang and B. Du, ‘‘Deep learning for remote 
sensing data:A technical tutorial on the state of the art,’’ IEEE 
Geosci. Remote Sens.Mag., vol. 4, no. 2, pp. 22–40, 2016. 

[13]   L. Wang, J. Tang and Q. Liao, "A Study on Radar Target 
Detection Based on Deep Neuranbl Networks," in IEEE 
Sensors Letters, vol. 3, no. 3, pp. 1-4, 2019. 

[14]   H. Deng, Z. Geng and B. Himed, “Radar Target Detection 
Using Target Features and Artificial Intelligence,” 2018 Int.  
Conf.  on Radar (RADAR), Brisbane, QLD, pp. 1-4, 2018. 

[15]   F. Yavuz and M. Kalfa, “Radar Target Detection via Deep 
Learning,” 2020 28 th   IEEE Conf.  on Signal Processing and 
Communications Applications (SIU), Gaziantep, Turkey, pp. 1-
4, 2020. 

[16]   J. Akhtar and K.Olsen “A Neural Network Target Detector with 
Partial CA-CFAR Supervised Training,” International 
Conference on Radar (RADAR), Brisbane, QLD, Australia, pp. 
1-6, 2018. 

[17]   M. Mostafa, S. Zahran, A. Moussa, N. El-Sheimy and A. 
Sesay, “Radar and visual odometry integrated system aided 
navigation for UAVS in GNSS denied environment,”. Sensors, 
vol. 18(9), no. 2776, 2018. 

[18]   S. Zahran, M.Mostafa, A. Moussa and N. El-Sheimy, 
“Augmented Radar Odometry by Nested Optimal Filter Aided 
Navigation for UAVS in GNSS Denied Environment,”in 2021 
International Telecommunications Conference, ITC-Egypt , 
Alexandria, Egypt, pp. 1-5, 2021. 

[19]   Ruspini, E.H.; Bezdek, J.C.; Keller, J.M. i“Fuzzy Clustering: A 
Historical Perspectiven”, IEEE Comput. Intell. Mag., 14, pp.45-
55, 2019. 

[20]   Liu, Q.; Liu, J; Li, M.; Zhou, Y. i“Approximation algorithms for 
fuzzy C-means problem based on seeding method, ”. Theor. 
Comput. Sci. 885, pp.146-158, 2021. 

[21]   Laleh Armi, Shervan Fekri-Ershad, “Texture image analysis 
and texture classification methods-A review”, arXiv preprint 
arXiv:1904.06554, 2019. 

[22]   Humeau-Heurtier, “A.Texture Feature Extraction Methods: A 
Survey”, IEEE Access, 7, pp 8975-9000, 2019. 

[23]   S Lee, Y. Yoon, J. Lee and S. Kim, “Human-vehicle 
classification using feature-based SVM in 77-GHz automotive 
FMCW radar”, IET Radar Sonar & Navigation., vol. 11, no. 10, 
pp. 1589-1596, 2017. 

 
 

 

 


