PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Jaki wpływ mają nanocząstki tlenku niklu na wzrost szczepu Stenotrophomonas maltophilia KB2 w obecności fenolu?

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
What are the effect of nickel oxide nanoparticles on the Stenotrophomonas maltolphilia KB2 growth in the presence of phenol?
Języki publikacji
PL
Abstrakty
PL
Wprowadzenie do hodowli szczepu St. maltophilia KB2 nanocząstek tlenku niklu nie zahamowało procesu biodegradacji fenolu, a reakcja populacji bakterii była uzależniona od stężenia nanocząstek i użytego surfaktantu. Opracowano metodykę przygotowania stabilnej dyspersji badanych nanocząstek oraz oceniono wpływ wybranych surfaktantów na wzrost komórek szczepu St. maltophilia KB2.
EN
The introduction of nickel oxide nanoparticles into the St. maltophilia KB2 cultures did not inhibit the phenol biodegradation process, and the reactions of the bacterial population were depended on the nanoparticles concentrations and the surfactant used. The methodology for the preparation of the tested nanoparticles stable dispersion was developed and the influence of selected surfactants on the growth of St. maltophilia KB2 cells was assessed.
Rocznik
Tom
Strony
57--74
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
  • Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
Bibliografia
  • [1] Świderska-Środa A., Łojkowski W., Lewandowska M., Kurzydłowski K.,2016. Świat nanocząstek, PWN Warszawa
  • [2] Buchman, J.T., Hudson-Smith, N.V., Landy, K.M., Haynes, C.L., 2019. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. Acc. Chem. Res. 52, 1632–1642. doi.org/10.1021/acs.accounts.9b00053
  • [3] Nastulyavichus, A., Shahov, P., Khaertdinova, L., Tolordava, E., Saraeva, I., Yushina, Y., Rudenko, A., Ionin, A., Khmelnitskiy, R., Khmelenin, D., Borodina, T., Kharin, A., Kudryashov, S., 2021. Bactericidal impact of nickel-oxide nanoparticles on foodborne pathogens: Complementary microbiological and IR-spectroscopic insights. Applied Surface Science 558, 149857. doi.org/10.1016/j.apsusc.2021.149857
  • [4] Slavin, Y.N., Asnis, J., Häfeli, U.O., Bach, H., 2017. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15, 65. doi.org/10.1186/s12951-017-0308-z
  • [5] Soares, E.V., Soares, H.M.V.M., 2021. Harmful effects of metal(loid) oxide nanoparticles. Appl Microbiol Biotechnol 105, 1379–1394. doi.org/10.1007/s00253-021-11124-1
  • [6] Guerrero Correa, M., Martínez, F.B., Vidal, C.P., Streitt, C., Escrig, J., de Dicastillo, C.L., 2020. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J. Nanotechnol. 11, 1450–1469. doi.org/10.3762/bjnano.11.129
  • [7] Metryka, O., Wasilkowski, D., Mrozik, A., 2021. Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. IJMS 22, 11811.doi.org/10.3390/ijms222111811
  • [8] Auffan, M., Rose, J., Wiesner, M.R., Bottero, J.-Y., 2009. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environmental Pollution 157, 1127–1133. doi.org/10.1016/j.envpol.2008.10.002
  • [9] Hussein, B.Y., Mohammed, A.M., 2021. Biosynthesis and characterization of nickel oxide nanoparticles by using aqueous grape extract and evaluation of their biological applications. Results in Chemistry 3, 100142. doi.org/10.1016/j.rechem.2021.100142
  • [10] Avramescu, M.-L., Chénier, M., Palaniyandi, S., Rasmussen, P.E., 2020. Dissolution behavior of metal oxide nanomaterials in cell culture medium versus distilled water. J Nanopart Res 22, 222. doi.org/10.1007/s11051-020-04949-w
  • [11] Wang, D., Lin, Z., Wang, T., Yao, Z., Qin, M., Zheng, S., Lu, W., 2016. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? Journal of Hazardous Materials 308, 328–334. doi.org/10.1016/j.jhazmat.2016.01.066
  • [12] Oukarroum, A., Barhoumi, L., Samadani, M., Dewez, D., 2015. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L. BioMed Research International 2015, 1–7. doi.org/10.1155/2015/501326
  • [13] Shinohara, N., Zhang, G., Oshima, Y., Kobayashi, T., Imatanaka, N., Nakai, M., Sasaki, T., Kawaguchi, K., Gamo, M., 2017. Kinetics and dissolution of intratracheally administered nickel oxide nanomaterials in rats. Part Fibre Toxicol 14, 48. doi.org/10.1186/s12989-017-0229-x
  • [14] Gąszczak, A., Szczyrba E., Szczotka,A., Greń, I., 2021. Effect of Nickel as Stress Factor on Phenol Biodegradation by Stenotrophomonas maltophilia KB2. Materials 14, no. 20: 6058. doi.org/10.3390/ma14206058
  • [15] Djebbi, E., Bonnet, D., Pringault, O., Tlili, K., Yahia, M.N.D., 2021. Effects of nickel oxide nanoparticles on survival, reproduction, and oxidative stress biomarkers in the marine calanoid copepod Centropages ponticus under short-term exposure. Environ Sci Pollut Res 28, 21978–21990.doi.org/10.1007/s11356-020-11781-1
  • [16] Khairnar, S.D., Shrivastava, V.S., 2019. Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. Journal of Taibah University for Science 13, 1108–1118. doi.org/10.1080/16583655.2019.1686248
  • [17] Kar, S., Pathakoti, K., Tchounwou, P.B., Leszczynska, D., Leszczynski, J., 2021. Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. Chemosphere 264, 128428.doi.org/10.1016/j.chemosphere.2020.128428
  • [18] Altaee, M.F., Yaaqoob, L.A., Kamona, Z.K., 2020. Evaluation of the Biological Activity of Nickel Oxide Nanoparticles as Antibacterial and Anticancer Agents. eijs 2888–2896.doi.org/10.24996/ijs.2020.61.11.12
  • [19] Behera, N., Arakha, M., Priyadarshinee, M., Pattanayak, B.S., Soren, S., Jha, S., Mallick, B.C., 2019. Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv. 9, 24888–24894. doi.org/10.1039/C9RA02082A
  • [20] Khashan, K.S., Sulaiman, G.M., 2016. Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak. J. Pharm. Sci. 7.
  • [21] Ilbeigi, G., Kariminik, A., Moshafi, M.H., 2019. The Antibacterial Activities of NiO Nanoparticles Against Some Gram-Positive and Gram-Negative Bacterial Strains. Int J Basic Sci Med 4, 69–74.doi.org/10.15171/ijbsm.2019.14
  • [22] Vijaya Kumar, P., Jafar Ahamed, A., Karthikeyan, M., 2019. Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl. Sci. 1, 1083.doi.org/10.1007/s42452-019-1113-0
  • [23] Kumari, B., Singh, D.P., 2016. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecological Engineering 97, 98–105.doi.org/10.1016/j.ecoleng.2016.08.006
  • [24] Gong, X., Huang, D., Liu, Y., Peng, Z., Zeng, G., Xu, P., Cheng, M., Wang, R., Wan, J., 2018. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Critical Reviews in Biotechnology 38, 455–468. doi.org/10.1080/07388551.2017.1368446
  • [25] Yu, B., Jin, X., Kuang, Y., Megharaj, M., Naidu, R., Chen, Z., 2015. An integrated biodegradation and nano-oxidation used for the remediation of naphthalene from aqueous solution. Chemosphere 141, 205–211. doi.org/10.1016/j.chemosphere.2015.07.050
  • [26] Szczyrba E., Gąszczak A., Szczotka A., Kolarczyk H., Janus B., 2020. Wpływ niklu na wzrost szczepu Stenotrophomonas maltophilia KB2 w obecności fenolu. Prace Naukowe IICh PAN, 24, 95-106
  • [27] Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z., 2010. Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environ. Sci. Technol. 44, 1962–1967. doi.org/10.1021/es902987d
  • [28] Asadi, A., Pourfattah, F., Miklós Szilágyi, I., Afrand, M., Żyła, G., Seon Ahn, H., Wongwises, S., Minh Nguyen, H., Arabkoohsar, A., Mahian, O., 2019. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry 58, 104701. doi.org/10.1016/j.ultsonch.2019.104701
  • [29] Jiang, J., Oberdörster, G., Biswas, P., 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11, 77–89. doi.org/10.1007/s11051-008-9446-4
  • [30] Nguyen, V.S., Rouxel, D., Hadji, R., Vincent, B., Fort, Y., 2011. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrasonics Sonochemistry 18, 382–388. doi.org/10.1016/j.ultsonch.2010.07.003
  • [31] Yi, S., Babadagli, T., Li, H., 2020. Stabilization of nickel nanoparticle suspensions with the aid of polymer and surfactant: static bottle tests and dynamic micromodel flow tests. Pet. Sci. 17, 1014–1024. doi.org/10.1007/s12182-020-00433-1
  • [32] Yıldız, G., Ağbulut, Ü., Gürel, A.E., 2021. A review of stability, thermophysical properties and impact of using nanofluids on the performance of refrigeration systems. International Journal of Refrigeration 129, 342–364. doi.org/10.1016/j.ijrefrig.2021.05.016
  • [33] Bihari, P., Vippola, M., Schultes, S., Praetner, M., Khandoga, A.G., Reichel, C.A., Coester, C., Tuomi, T., Rehberg, M., Krombach, F., 2008. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5, 14. doi.org/10.1186/1743-8977-5-14
  • [34] Zdarta, A., Smułek, W., Pacholak, A., Dudzińska-Bajorek, B., Kaczorek, E., 2020. Surfactant addition in diesel oil degradation – how can it help the microbes? J Environ Health Sci Engineer 18, 677–686. doi.org/10.1007/s40201-020-00494-9
  • [35] Mohanty, S., Jasmine, J., Mukherji, S., 2013. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil. BioMed Research International Article ID 328608. doi.org/10.1155/2013/328608
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af4e208e-1af8-4d4a-a586-775b468aa6b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.