Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to indicate the influence of consolidation processes on microstructure and selected mechanical properties of powder metallurgy Ti-5Al-5Mo-5V-3Cr alloy, which was produced by blending of elemental powders method. Morphology of the mixture and its ingredients were examined using scanning electron microscopy. The consolidation of powders mixture was conducted using two approaches. The first consisted of the uniaxial hot pressing process, the second included two steps – uniaxial cold pressing process and sintering under argon protective atmosphere. Microstructural analysis was performed for both as-pressed compacts using light microscopy. Additionally, computed tomography studies were carried out, in order to examine the internal structure of compacts. Chosen mechanical properties, such as Vickers hardness and compression strength was also determined and compared. The conducted research proves that the proposed production method leads to obtain materials with no structural defects and relatively low porosity. Moreover, due to the proper selection of manufacturing parameters, favorable microstructures can be received, as well as mechanical properties, which are comparable to conventionally produced material with the corresponding chemical composition.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
283--289
Opis fizyczny
Bibliogr. 19 poz., fot, rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Z. Z. Fang, J. D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, Powder metallurgy of titanium - past, present, and future, Int. Mater. Rev. 63, 407-459 (2018).
- [2] R. R. Boyer, R. D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry J. Mater. Eng. Perform. 22, 2916-2920 (2013).
- [3] M. Long, H. Rack, Titanium alloys in total joint replacement - a materials science perspective, Biomaterials 19, 1621-1639 (1998).
- [4] J. Capus, Titanium powder developments for AM - A round-up, Met. Powder Rep. 72, 384-388 (2017).
- [5] K. Zyguła, T. Śleboda, M. Wojtaszek, G. Korpała, Physical modeling of hot forging of cast and P/M Ti-6Al-4V alloy, METAL 2017 - 26th International Conference on Metallurgy and Materials, Conference Proceedings 1977-1982 (2017).
- [6] R. A. Antunes, C.A.F. Salvador, M.C.L. de Oliveira, Materials Selection of Optimized Titanium Alloys for Aircraft Applications, Mater. Res. 21 (2018).
- [7] S. S. Dheda and F. A. Mohamed, Effect of initial microstructure on the processing of titanium using equal channel angular pressing, Mater. Sci. Eng. A 528, 8179-8186 (2018).
- [8] P. Gao, M. Zhan, X. Fan, Z. Lei, Y. Cai, Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure, Mater. Sci. Eng. A 689, 243-251 (2017).
- [9] Z. L. Zhao, H. Li, M. W. Fu, H. Z. Guo, Z. K. Yao, Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing, J. Alloys Compd. 617, 525-533 (2014).
- [10] M. Jackson, N. G. Jones, D. Dye, R. J. Dashwood, Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al, Mater. Sci. Eng. A 501, 248-254 (2009).
- [11] F. Yang, B. Gabbitas, M. Dore, A. Ogereau, S. Raynova, L. Bolzoni, On microstructural evolution and mechanical properties of Ti-5Al-5V-5Mo-3Cr alloy synthesised from elemental powder mixtures, Mater. Chem. Phys. 211, 406-413. (2018).
- [12] T. Saito, H. Takamiya, T. Furuta, Thermomechanical properties of P/M β titanium metal matrix composite, Mater. Sci. Eng. A 243, 273-278 (1998).
- [13] R. Naseri, D.R.G. Mitchell, D. G. Savvakin, M.J.B. Nancarrow, T. Furuhara, A. A. Saleh, A. A. Gazder , E. V. Pereloma, The effect of β-phase condition on the tensile behaviour in a near-β Ti alloy produced by blended elemental powder metallurgy, Mater. Sci. Eng. A 747, 232-243 (2019).
- [14] E. Eisenbarth, D. Velten, M. Müller, R. Thull, J. Breme, Biocompatibility of β-stabilizing elements of titanium alloys, Biomaterials 25, 5705-5713 (2004).
- [15] Kaufman, J. Gilbert, (2012). Titanium Alloy Database. Knovel. Accessed April 1, 2019. Retrieved from https://app.knovel.com/hotlink/toc/id:kpTAD00001/titanium-alloy-database/titanium-alloy-database.
- [16] F. Yang, S. Raynova, A. Singh, Q. Zhao, C. Romero, L. Bolzoni, Hybrid microwave sintering of blended elemental Ti alloys, Jom. 70, 632-637 (2018).
- [17] M. Hattori, S. Takemoto, M. Yoshinari, E. Kawada, Y. Oda, Effect of chromium content on mechanical properties of casting Ti-Cr alloys, Dent. Mater. J. 29, 570-574 (2010).
- [18] H. C. Hsu, S. C. Wu, S. K. Hsu, C. Y. Chen, W. F. Ho, Structure and mechanical properties of as-cast Ti-5Sn-xCr alloys, Mater. Sci. Eng. A 606, 157-164 (2014).
- [19] H. Hsu, S. Wu, S. Hsu, T. Lin, W. Ho, Structure and mechanical properties of as-cast Ti-5Nb-xCr alloys, Mater. Des. 51, 268-273 (2014).
Uwagi
EN
1. Financial support of the European Union from the European Social Fund under the project: POWR.03.05.00-00-Z307/17-00 is gratefully acknowledged. The publication was financed by the Ministry of Science and Higher Education under project 844/P-DUN/2019 zad. 2
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af4c0a8b-276d-40d7-b9a4-7a663e00290e