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Abstract: In modern data analysis and machine learning, data
are often represented in the form of pairwise comparisons of the
elements of the data set. The pairwise comparisons immediately
correspond to the similarity or dissimilarity of objects under inves-
tigation, and such a situation regularly arises in the domains of im-
age and signal analysis, bioinformatics, expert evaluation, etc. The
practical pairwise comparison functions may be incorrect in terms of
potentially using them as scalar products or distances. In contrast
to other approaches, we develop in this paper a technique based on
the so-called metric approach, which proposes to modify the values
of empirical functions so as to get scalar products or distances. The
methods for obtaining the correct matrices of pairwise comparisons
and for improving their conditionality are developed here.
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1. Introduction. Data representation by pairwise compa-

risons

Traditionally, data analysis is based on a general model in the form of a multidi-
mensional feature space as in the case of the three-dimensional space of our real
world, which corresponds to Euclidean geometry. The feature space is formed
by the characteristics of objects measured in one way or another, or additionally
calculated based on measurements in some natural way.

This model is really convenient because it allows us to stay within the frame-
work of the natural ideas about the behavior of research objects by analogy with
the behavior of objects in the real world. In this case, the elements of the set
are represented in the multidimensional coordinate space of features (attributes)
by their vectors, between which mutual distances and scalar products can be
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calculated based, for instance, on the well-known law of cosines. These values
are easily calculated based on the measurement results. From a mathematical
point of view, such experimental data are considered to be immersed in the
coordinate (Euclidean) space by the measurement process.

It should be noted that the modern understanding of the object of research
has significantly expanded. It is believed that in the general case, this object
is some kind of structure. The types of structures and their representation
are really different. Unlike the traditional situation, when the object under
investigation is represented by a set of characteristics, it is often inconvenient
and even impossible to determine what should be measured as characteristics
of such complex objects.

Therefore, in modern intelligent data analysis, machine learning, etc., expe-
rimental results are often immediately presented in the form of pairwise compar-
isons, representing the similarities or dissimilarities (differences) of the objects
under study. In practice, it is more convenient to compare such objects directly
with each other in one way or another in order to evaluate their similarity or
dissimilarity with respect to each other.

From the mathematical point of view, the pairwise comparisons should be
immersed in some metric space. Obviously, the configuration of a set of objects
is determined by their mutual locations in a metric space.

Here, it should be said foremost that based on the idea of paired comparisons,
such an approach requires, at least, solutions in three interrelated areas: first,
developing the algorithms for data analysis and machine learning as analogues of
the algorithms for data matrices; second, developing the methods for immersing
paired comparisons in metric space (the problem of correcting the violations of
metricity); and third, developing the methods for solving the specific practical
problems.

The first problem was considered in some previous publications of the present
author (Dvoenko, 2009; 2022). It is assumed that this problem is solved for data
immersed in a metric space without violations and involves the use of special
techniques for pairwise representation of data (Dvoenko, 2022). The use of
respective techniques makes it possible to determine the specific conditions and
conclude that algorithms for pairwise comparisons are equivalent in terms of
the results obtained to the same algorithms for the vector form (based on the
examples of the well-known algorithms of cluster analysis). The third kind of
problems is expected to be considered later in subsequent future publications
here.

In this article, the second problem is considered. The metric immersion
problem is formulated here as follows. The pairwise comparison functions com-
monly used in practice can often be developed “ad hoc”. Here, it is suitable
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to refer to them as “empirical”. In modern conditions, such pairwise compar-
isons can even require developing the special algorithms to obtain them (for
example, evaluating the similarity of signals or symbolic chains based on their
alignment, evaluating the similarity of graph structures in an image and text
analysis). So, sometimes it may happen that they are not the formally correct
functions of similarity or distance. The use of such comparison functions can
lead to violations of the configuration of the set elements in a metric space, due
to inconsistencies in their relative positions. What we mean is that, in this case,
the elements of the set cannot be immersed in the metric space. As a result,
formally, we cannot correctly solve the first task mentioned above.

In order to immerse the elements of a set into metric space, it is necessary to
eliminate violations of the relations, associated with their relative positions. So,
there is a need to develop the methodology of eliminating metricity violations.

The metric immersion problem was, definitely, known and approached be-
fore, see, for instance, Bishop and Crittenden (1964). In modern conditions,
the problem of metric immersion of pairwise comparisons has become practi-
cally important in data analysis, machine learning, signal and image processing
(Pekalska and Duin, 2005), etc.

It is known that the condition for immersion of a set in a metric (Euclidean)
space consists of the non-negative definiteness of the scalar product matrix of
its elements (Young and Householder, 1938). It is known that the configuration
violations occur when the triangle inequality is violated on some triplets of
elements. A stronger violation consists of a violation of the law of cosines on
triplets of elements. In all such cases, the matrix of scalar products of the
corresponding triple of elements is non-positive definite.

In our approach, we would like to change the results of pairwise comparisons
possibly minimally to recover the metric configuration. If there is a pairwise
similarity matrix (for any similarity function), then the correction problem does
not arise if such a matrix is non-negatively definite. As we exclude the coinciding
elements of the set, the respective matrix is positive definite. This means that all
its eigenvalues are positive. Then we consider that the set is immersed in some
metric space or an equivalent space formed by the corresponding eigenvectors.
It is then convenient to consider such a similarity function as a scalar product.
It has positive values in this case, since the elements of the set are located in
the same quadrant of the metric space. Note that on another limited set, the
similarity matrix may turn out to be non-positive definite.

To obtain a positive definite matrix, we can proceed in any way that leads
to this goal. In the present article, we demonstrate the methods to do this.
They are based on the law of cosines, relating Euclidean distances and scalar
products, and are called here the metric approach. If the similarity matrix is
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correct in the above sense, then any transformation to dissimilarities gives a
correct matrix of the corresponding empirical distances.

If there is only a matrix of pairwise dissimilarities (also any function), then
any suitable transformation to the similarity function that gives a positive def-
inite similarity matrix allows us to conclude that such a distance matrix is cor-
rect. If the transformation to the similarity function gives a non-positive definite
matrix, then it is necessary to correct it and then restore the correct distances.
Note that different similarity transformations can give different results in the
form of positive (or non-positive) definiteness of the similarity matrix.

Hence, the problem of correction does not arise if it is possible to propose
the appropriate empirical (in general) similarity function. In a general case, we
can consider various similarity and distance functions, their properties, etc. But
this is not the topic of this article.

Note that the idea of correcting the initial data represented by pairwise
comparisons is practically the same as the well-known problem of the expert’s
ranking of alternatives. In such a task, it is sometimes necessary to present
the evaluation results in the form of pairwise comparisons of the preference of
one alternative over another. Usually, this is necessary for the consideration of
multiple alternatives. In this case, it is more suitable for an expert to compare
alternatives by pairs, without paying attention to the other ones. It is less
suitable to immediately arrange them, taking into account the position relative
to all other alternatives. At the same time, experts are not required to have their
opinions transitive. As a result, the ranking method needs to be “responsible”
for the correction of violations.

Ranking means the result of measurements on some ordinal scale. The lim-
ited nature of permitted operations on ordinal scales allows us to apply simple
conditions for the transitivity of preferences (Luce’s axiom) and obtain the so-
called supertransitive matrices of pairwise comparisons of preference for alter-
natives (Luce, 1959; Mirkin, 1974).

When the elements of a set are immersed in a metric space, the quantitative
measurements are supposed to be produced on measurement scales that are
more powerful than ordinal or interval ones. This allows us to perform the
usual transformations in data analysis on measurement results.

It is necessary to note, in addition, that in the well-known multidimen-
sional scaling analysis, the interpretable space of the so-called “stimuli” is re-
constructed with the additional minimization of its dimension (Torgerson, 1958;
Cox and Cox, 2001). In the metric scaling problem, the elements of a set are
immersed in Euclidean space. An appropriate dimension is determined, for ex-
ample, based on the discrete Karhunen-Loeve expansion, preserving not less
than 80% of the variance of the original data (Tou and Gonzalez, 1977). In
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the non-metric scaling problem, it is required only to maintain the triangle
inequality (Cox and Cox, 2001).

In our metric approach to immersing a set in a coordinate space, we do not
need to restore the Euclidean coordinate space of “stimuli” explicitly for the
subsequent development of data processing algorithms (Dvoenko, 2009; 2022).
On the other hand, unlike in non-metric scaling, we need to comply with the
law of cosines (Dvoenko and Pshenichny, 2018).

It needs to be noted that we have already encountered the situations when
the feature space appears to be unnecessary for further processing. In data
analysis, the SVM problem (Vapnik and Chervonenkis, 1974; Vapnik, 1998)
of searching a separating hyperplane when learning to recognize two classes is
considered. This is a quadratic programming task. In the dual formulation, its
solution is based on a matrix of scalar products of the vectors of elements of the
training set in Euclidean space. Therefore, the feature space itself is no longer
needed in the dual quadratic programming problem.

The so-called “kernels” are usually used in the SVM method. This is a class
of the potential functions. It can be shown that a potential function in a finite-
dimensional space corresponds to an inner product in a countable-dimensional
Hilbert space (Aizerman, et al., 1970) in general.

A similar situation, when the feature space itself is no longer required, arises
in a number of learning algorithms, clustering, and factor analysis: the algorithm
for determining the nearest points of convex hulls (Kozinets, 1973), algorithms of
the Forel family (Zagoruiko, 1999), the k-means algorithm for similarity and the
algorithm for the centroid main factor using the k-means algorithm (Dvoenko,
2009).

Finally, when correcting violations of the relative arrangement of the ele-
ments of a set in a metric space, we try, if possible, to minimize differences be-
tween the original and the modified values of pairwise comparisons. Elimination
of violations leads to the elimination of negative eigenvalues of the correspond-
ing scalar product matrix. But positive eigenvalues close to zero inevitably lead
to ill-conditioned matrices of pairwise scalar products.

The thus appearing conditionality problem is well-known (Boyd, Ghaoui,
Feron, and Balakrishnan, 1994). When working with such matrices, for example,
to obtain the inverse matrix, the very advanced computational methods are
used. Here, it is proposed additionally to regulate the correction degree of the
original pairwise comparisons to achieve some acceptable level of conditionality.

When considering the applied problems, we pay attention both to the quality
of their solution and to the volume and speed of calculations. This is because
modern data analysis requires the processing of truly large-scale data sets. It
should be noted that in this article the actual applied problems (cluster analysis,
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machine learning, etc.) are not considered. Also, this article does not address
the problem of processing large-scale data. Here, we discuss a mathematical
method, illustrated with small examples.

It should be noted that the methods developed in the article are based on
the calculation of the determinants of square symmetric matrices, their eigenval-
ues, and eigenvectors. These computational methods are well-known, and their
applicability to large-scale data (advantages and disadvantages) is also known.
To process large volumes of data, as is known, it is necessary to decompose the
calculation process, determine parallel intervals, etc. So, it is necessary to apply
some technology for organizing large-scale computing. Methods for organizing
large-scale calculations are known. For example, we can refer to Kalyaev et
al. (2012) for a technology for automating massive calculations based on the
creation of supercomputers on FPGA elements (field-programmable gate array)
to solve problems of different classes that arise in modern machine learning.

Let us consider a set Ω = {ω1, ..., ωm} of elements immersed into a multi-
dimensional metric space by the process of measurements xi = x(ωi), which
gives a traditional matrix of experimental data, X(m,n). Here m is the num-
ber of acts of measurements or experiments, considered as objects. Then, n
is the number of characteristics of the phenomenon under study, considered to
be object’s features. On the one hand, these data are being treated as row
vectors xi = (xi1, ..., xin), i = 1, ...,m. Based on measurements, Euclidean dis-
tances, forming the matrix D(m,m), are usually calculated between objects,
where dij = ||xi−xj ||, or perhaps less traditionally, scalar products, contained
in matrix S(m,m), where sij = xix

T
j .

On the other hand, the same data can be considered as column vectors
Xj = (x1j , ..., xmj)

T , j = 1, ..., n. Based on measurements, scalar products
S(n, n) are traditionally calculated between features, where sij = XT

i Xj . In
the probabilistic approach, normalized scalar products of features are also con-
sidered as correlations R(n, n) = (1/m)XTX.

Note that the elements from Ω can be both perceived as the objects and
the features, pairwise comparisons of which can be performed, for example, as
shown above, if their characteristics are available for measurement.

A numerical example of how to immerse measurements and pairwise com-
parisons in Euclidean space is discussed in Appendix 1.

Now, in the next, second section, the metric violations in pairwise compar-
isons are investigated. It is shown that they arise not only on triples of elements
but also on subsets with more than three elements.

The third section discusses the methods for eliminating violations of pair-
wise similarity. The corrections of normalized scalar products and similarities
are considered. A numerical example of the optimal correction is discussed in
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Appendix 2. The fourth section discusses a method for eliminating violations of
pairwise differences. The fifth section considers the conditionality optimization
problem of the corrected pairwise comparison matrix.

2. Metric violations in pairwise comparisons

2.1. Violations on triples of elements

Let us consider the set Ω = {ω1, ..., ωm} of elements, represented only by a
symmetric matrix of pairwise comparisons, with values S(m,m). The pairwise
comparisons, with values −1 < sij < 1, are understood as the normalized
scalar products of elements from Ω, and the pairwise comparisons, having values
0 ≤ sij < 1, are also understood as non-negative similarities, i.e. the normalized
scalar products for elements located in the same quadrant of a metric space.

If the pairwise comparison matrix S(m,m) is positive definite, then it rep-
resents the normalized scalar products of elements from Ω = {ω1, ..., ωm} in
some metric space of dimensionality m (Young and Householder, 1938). Then,
the values sij are the cosines of the angles between elements ωi, ωj , represented
by vectors in a metric space. So, in a triplet of elements ωi, ωj and ωk we
get sii = 1 (as the similarity of the element ωi with itself), sij = cosα (as the
similarity ωi with ωj) and sik = cosβ (as the similarity ωi with ωk). All values
sij , j = 1, ...,m define the positions of the elements ωj relative to ωi as a hyper-
cone based on a hypercircle centered on the axis of the vector that represents
the element ωi in a metric space. The values sik, k = 1, ...,m are represented
in the same way.

If an element ωi is given, then relative to it all the relative positions of pairs
of elements ωj , ωk are given by the corresponding hypercones. Then, the values
sjk determine the cosines of the angles between ωj and ωk. These elements are
the closest to each other when they are located in the plane with ωi on the
one side of it, where sjk = cos(α − β) = cijk1 . These elements are most distant
with respect to each other when they are located in the plane with ωi on the
opposite sides of it, where sjk = cos(α+ β) = cijk2 . If similarity is considered as
a non-negative function, then α+ β ≤ π/2.

Based on the formulas for transforming the cosine of the difference and the
sum of the arguments, we obtain the boundaries of the interval

cijk1,2 = sijsik ±
√

(1− s2ij)(1− s2ik).

The metric violation means the violation of the interval cijk2 ≤ sjk ≤ cijk1 ,
meaning that the values of sjk are outside of it. This means that the matrix
S(m,m) becomes non-positive definite.
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2.2. Violations on the sets of elements

However, it may turn out that all of the submatrices of S(m,m), consisting of
triplets of elements from the set Ω, are positive definite, but the matrix itself
is still non-positive definite. This seems a little surprising, but helps us to
understand the problem better.

Metric violations, on the one hand, can occur on triplets of elements, both
when the law of cosines is violated, and when the triangle inequality, as a weak
version of the law, is violated. On the other hand, metric violations can occur
on configurations containing more than three elements, in general.

Theorem 1 If a metric violation occurs, then the corresponding set of elements
cannot define the set of hyperspheres in a special coordinate space.

Proof Let the set Ω = {ω1, ..., ωm} be considered in some order, for example,
according to a given arbitrary numbering. Let some of its elements be already
considered. At the step k = 1, ...,m, the set of already scanned elements is
represented by a principal minor S(k, k), where S(1, 1) = s11 = 1 is the first

(top left) principal minor, S(2, 2) =

(

1 s12
s21 1

)

is the second principal minor,

etc., of the matrix S(m,m). Let us denote the values of the principal minors
S(k, k) by Sk = detS(k, k), where S1 = 1, S2 = 1− s212, etc.

The purpose of the proof is to define a set of hyperspheres in a special
coordinate space. It is originally proven in Dvoenko and Pshenichny (2018) and
revised here. Let the ends of all vectors in the m-dimensional space be located
on the hypersphere of the unit radius. We sequentially add each next element
of the set in the form of a vector to this space.

Let the first vector be directed along the first axis and represented by the
coordinates (u1, ..., um) = (1, 0, ..., 0). According to the law of cosines, the posi-
tion of the second vector relative to the first one is determined by the similarity
s12 and the distance d12 =

√
2− 2s12 between them. All possible positions of

the end of the second vector relative to the end of the first vector define the
m-dimensional hypersphere of the radius d12, subject to conditions

{

u2
1 + ...+ u2

m = 1
(u1 − 1)2 + ...+ u2

m = 2− 2s12
.

By subtracting the second equation from the first, we obtain u1 = s12 and the
first hypersphere in the form of equation

u2
2 + ...+ u2

m = 1− s212 = S2/S1.

Consequently, all possible positions of the end of the second vector are deter-
mined by the (m − 1)−dimensional hypersphere with the center at the origin
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and the radius
√

S2/S1, where u1 = s12. Thus, the second vector is represented

by the coordinates (s12,
√

S2/S1, 0, ..., 0).

Let us consider the similarity of the second and third vectors, s23, and the
distance d23 =

√
2− 2s23 between them. The correct positions of the third

vector relative to the first and second vectors are determined by the conditions











u1 = s13
u2
2 + ...+ u2

m = 1− s213

(u1 − s12)
2 +

(

u2 −
√

1− s212

)2

+ u2
3 + ...+ u2

m = 2− 2s23

.

By subtracting the third equation from the second and taking into account the
first, we get

u2 = (s23 − s12s13)/
√

1− s212 = (S3)
2
3/
√

S1S2,

where the notation (Sk)
i
j = det (S(k, k))ij represents the value of the additional

minor (S(k, k))ij , which is obtained from the principal minor S(k, k) by crossing
out the i-th row and the j-th column.

After substituting the found component into the second equation, we obtain
the second hypersphere in the form of the following equation

u2
3 + ...+ u2

m =
1 + 2s12s13s23 − s212 − s213 − s223

1− s212
= S3/S2.

Consequently, all possible positions of the end of the third vector are defined
by the (m− 2)−dimensional hypersphere with the center at the origin and the
radius

√

S3/S2. Thus, the third vector is represented by the coordinates

(s13, (S3)
2
3/
√

S1S2,
√

S3/S2, 0, ..., 0).

Continuing this reasoning for the fourth and subsequent vectors, we de-
fine the subsequent components uk−1 = (Sk)

k−1
k /

√

Sk−2Sk−1 and (m − k +

1)−dimensional hyperspheres of radii
√

Sk/Sk−1 in the form of equations u2
k +

... + u2
m = Sk/Sk−1. As a result, the coordinates of the k-th vector in such a

special m-dimensional space are determined by the expressions















u1 = s1k
ut = (Sk)

t
t+1/

√

St−1St, t = 2, ..., k − 1

uk =
√

Sk/Sk−1

uk+1 = ... = um = 0

,

where the coordinates ui with indices outside of the range 1 ≤ i ≤ m do not
exist, and S0 = 1.
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Obviously, for a normalized matrix S(m,m), the sequence of its principal
minors determines the sequence of decreasing values of their determinants S1 =
1 > S2 =

√

1− s212 > ... > Sm = detS(m,m).

A violation occurs when the current principal minor appears to be negative.
In this case, the radius squared of the corresponding hypersphere in a special
coordinate space turns out to be negative, and the radius itself turns out to be
a complex value. In this case, the end of the added vector is not situated on the
corresponding hypersphere. Hence, the proof is complete.

Corollary 1 Suppose that on the set Ω = {ω1, ..., ωm}, represented by the ma-
trix S(m,m), the law of cosines is not violated on all triples of its elements. If
there is an element represented by a vector, whose end in the special coordinate
space is not located on the corresponding hypersphere with a radius defined rela-
tive to all previous vectors, then this matrix has at least one negative eigenvalue.

Corollary 2 The values of the principal minors of a positive definite normal-
ized matrix of scalar products S(m,m) decrease, starting from the unit value,
while remaining positive. If there are metric violations, then the values of the
principal minors decrease in absolute value, alternating their signs. The number
of sign changes is determined by the number of negative eigenvalues, according
to Sylvester’s law of inertia (Horn and Johnson, 1990). Let a metric violation
occur in the sequence of principal minors after a new element is added. Then
the current principal minor reverses its sign relative to the previous principal
minor.

Corollary 3 If the current principal minor becomes negative, then a metric
violation occurs. To eliminate this, we need to restore the positivity of this
principal minor by adjusting the pairwise comparisons of the current element of
the set, which are represented by the last row and column of this minor.

3. Correction of violations in pairwise scalar products and

similarities

3.1. Individual and vector correction

A simple method of correction immediately follows from the idea of metric
violations on triples of elements of the set Ω = {ω1, ..., ωm}, which is represented
by the matrix S(m,m). It is easy to see that in this matrix each of its rows,

sij , j = 1, ...,m determines, as shown above, the acceptable intervals cijk2 ≤
sjk ≤ cijk1 for all other elements sjk, j = 1, ...,m, k = 1, ...,m.

Let us define m symmetric normalized similarity matrices Si(m,m), i =
1, ...,m with elements sijk, where in each of them the row siik, k = 1, ...,m
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coincides with the same row sik, k = 1, ...,m in the original matrix S(m,m).

As a result, for each similarity sjk, the minimal acceptable interval maxic
ijk
2 ≤

sjk ≤ minic
ijk
1 is determined. If any of these intervals is violated, a new matrix,

S̃(m,m), is defined, where for each violated interval a new value s̃jk is selected
within it.

The problem consists of finding an appropriate value inside the acceptable
interval. It is quite obvious that the corrected values should differ from the
original ones as little as possible. Hence, the heuristic rule is as follows: since
the original value is outside the acceptable interval to the left or right of it,
the corrected value should be as close as possible to the corresponding interval
boundary.

Let us denote the values of the principal minors S(k, k), k = 1, ...,m of the
normalized matrix S(m,m) as Sk = detS(k, k), where S1 = 1, S2 = 1 − s212,
etc. According to the corollaries of Theorem 1, the sequence of principal minors
defines the sequence of decreasing values of their determinants S1 = 1 > S2 =
√

1− s212 > ... > Sm = detS(m,m). Therefore, the slower the values of the
determinants decrease in this sequence, the fewer opportunities there are for the
next element of the set to make the determinant zero or negative, i.e. provoke
a metric violation.

Then, in the case of violation, it is necessary to change the negative value
of the determinant of the current principal minor to a positive value as close as
possible to the value of the determinant of the previous principal minor. Let us
consider the individual correction of separate elements of the current principal
minor subject to these conditions. Let us perform the decomposition of the
minor S(k, k) over the elements of the k-th row

Sk =

k
∑

p=1

(−1)k+pskp(Sk)
k
p =

k−1
∑

p=1

(−1)k+pskp(Sk)
k
p + Sk−1,

where (Sk)
k
p is the value of the additional minor (S(k, k))kp for the minor S(k, k)

after excluding the k-th row and the p-th column,

Sk−1 = (−1)k+kskk(Sk)
k
k = (Sk)

k
k.

Next, we perform the decomposition of the minors (S(k, k))kp by the elements of
the k-th column, while we preserve the indexing relative to the minor S(k, k):

Sk = Sk−1 +

k−1
∑

p=1

(−1)k+pskp

(

k−1
∑

q=1

(−1)(q+k)−1sqk((Sk)
k
p)

q
k

)

=

= Sk−1 +
k−1
∑

p=1

k−1
∑

q=1

(−1)(2k−1)+p+qskpsqk(Sk−1)
q
p =
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Sk−1 −
k−1
∑

p=1

k−1
∑

q=1

(−1)p+qskpsqk(Sk−1)
q
p.

Since skl = slk for a symmetric similarity matrix (of scalar products), we repre-
sent the values Sk as positive functions Sk(skl) > 0, l = 1, ..., k − 1, satisfying
the following conditions for each element of the last row:



































Sk(skl) = Als
2
kl +Blskl + Cl

Al = −(Sk−1)
l
l

Bl = −2
k−1
∑

q=1,q 6=l

(−1)q+lsqk(Sk−1)
q
l

Cl = Sk−1 −
k−1
∑

p=1, p 6=l

k−1
∑

q=1, q 6=l

(−1)p+qskpsqk(Sk−1)
q
p

.

It is easy to see that (Sk−1)
l
l > 0 for all l = 1, ..., k − 1, because Sk−2 > 0.

Therefore, Al < 0 and symmetrical elements can be corrected in the interval

cl2 ≤ skl ≤ cl1, if B
2
l − 4AlCl > 0, where cl1,2 = 1

2Al

(

−Bl ±
√

B2
l − 4AlCl

)

.

It is easy to verify that on its boundaries Sk(skl) = 0, as Sk(c
l
1) = 0 and

Sk(c
l
2) = 0, and Sk(skl) > 0 inside the interval. Indeed, let us consider the

middle of this interval skl = −Bl/(2Al). Then, inside the interval c
l
2 ≤ skl ≤ cl1,

we get

Sk(skl) = Sk

(−Bl

2Al

)

=
Al(−Bl)

2

4A2
l

+
−B2

l

2Al

+ Cl =
B2

l − 4AlCl

−4Al

> 0,

since the numerator and denominator of this expression are positive.

Let us define the corrected value as skl = −Bl/(2Al), since in this case the
value Sk is the closest to Sk−1 under the condition Sk < Sk−1. In general, more
than one element from skl, l = 1, ..., k− 1 can be modified. Then, among them,
it must be specified which one results in the biggest value Sk(skl) during cor-
rection, since a positive minor S(k, k) with the biggest value of its determinant
Sk = detS(k, k) will be obtained. Such a minor secures a minimal decrease
in the determinant Sk−1 = detS(k − 1, k − 1) of the previous positive minor
S(k − 1, k − 1).

In a situation, when there is B2
l − 4AlCl ≤ 0 for some skl or for all of them

in a line l = 1, ..., k − 1, the individual correction is not possible. In such a
case, all these comparisons (composing a vector) have to be modifed. Note that
in the general case, the problem of simultaneous correction of several pairwise
comparisons arises: of pairs, triplets, etc. We consider this problem below.

Here it is quite obvious that individual modifications in separate pairwise
comparisons are always stronger than modifications in several pairwise compar-
isons of the element that caused the metric violation. Therefore, the vector
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correction (the vector of pairwise comparisons) generally makes less changes to
the values of individual pairwise comparisons.

Let the elements of the set Ω = {ω1, ..., ωm} be scanned in a certain order and
define the set of the already visited elements, represented at the k-th step by the
current minor S(k, k), k = 1, ...,m. If its determinant is negative, Sk < 0, then
we consider that the current element ωk ∈ Ω introduces the metric violation.
Pairwise comparisons of a given element define the k-th row and the k-th column
of the minor.

If we replace the vector of comparisons of this element with previous elements
with the orthogonal vector of unit length, then the determinant of such a minor
will coincide with the value of the determinant of the previous minor Sort

k =
Sk−1 > 0. Indeed, in a minor Sort(k, k), the last row and column are zero with
the unit on the main diagonal of the minor. Then, calculation of its determinant
by expanding over the elements of the last row only leads to the Sk−1.

However, the orthogonal vector of pairwise comparisons is too far from the
vector of pairwise comparisons of the element ωk ∈ Ω that caused the violation.
Therefore, the orthogonal vector must be rotated in the direction of the original
comparison vector until a positive value Sk is obtained.

The procedure is as follows. For a given threshold ε > 0 of deviation from
zero, the new value of the determinant S′

k is defined as S′
k = (P1+P2)/2, where

at first P1 = Sk < 0 and P2 = Sort
k = Sk−1 > 0. At each step, the following is

checked: if S′
k ≤ 0, then P1 = S′

k, if S
′
k > 0, then P2 = S′

k. If 0 ≤ S′
k ≤ ε, then

stop.

3.2. Optimal correction

Let us consider the inverse matrix R(k− 1, k− 1) = S(k− 1, k− 1)−1, where its
elements are calculated as rpq = (−1)p+q(Sk−1)

q
p/Sk−1. It is easy to see that

the decomposition of the minor S(k, k) over the elements of the k-th row and
the k-th column, discussed above for individual correction, now takes the form

Sk = Sk−1 −
k−1
∑

p=1

k−1
∑

q=1

skpsqkrpqSk−1 = Sk−1

(

1−
k−1
∑

p=1

k−1
∑

q=1

skpsqkrpq

)

.

If Sk < 0, then we find its new value 0 ≤ c ≤ Sk−1. Let the variables xp = skp =
spk, p = 1, ..., k − 1 determine the new values of the elements of the corrected
minor S(k, k), which satisfies the condition

c = Sk−1

(

1−
k−1
∑

p=1

k−1
∑

q=1

skpsqkrpq

)

= Sk−1(1− C),
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where C = 1 − c/Sk−1 for a predefined value 0 ≤ c ≤ Sk−1 of the determinant
Sk. Since Sk ≤ Sk−1, it is convenient to define c = τSk−1 as a fraction of the
value Sk−1, where 0 ≤ τ ≤ 1.

Let us formulate the problem of optimal correction with the ability to correct
a subset of pairwise comparisons of the element ωk ∈ Ω that caused the metric
violation. Let us denote by P = {1, ... k − 1} the set of indices of all elements.
Let us denote by I ⊆ P a subset of indices of the modified elements from P .
Then, the indices of unchanged elements define a subset P\I. Let us consider
the constrained optimization problem

∑

p∈I

(spk − xp)
2 → min, s.t.

∑

p∈P

∑

q∈P

skpsqkrpq = C.

The solution by the Lagrange multiplier method gives a system of equations,
where the number of equations is determined by the indices p ∈ I of the modified
elements











λ
∑

i∈I xirip +
∑

i∈P\ I skirip = skp − xp, p ∈ I

∑

i∈I

∑

j∈I

xixjrij +
∑

i∈I

∑

j∈P\I

xisjkrij+
∑

i∈P\I

∑

j∈I

skixjrij+
∑

i∈P\I

∑

j∈P\I

skisjkrij= C.

Upon solving of this system of nonlinear equations by a suitable numerical
method, we obtain the optimally adjusted row and column of the minor S(k, k).
Appendix 2 presents a numerical example of that optimal correction.

3.3. Locating the negative eigenvalues

Let there be metric violations in the configuration of the elements of the set
Ω = {ω1, ..., ωm}. It is easy to imagine that the elements of this set can be
viewed in a different order.

It may turn out that a different sequence of principal minors requires a
correction of the negative values of the determinants of other principal minors
and leads to a smaller magnitude of total changes in the values of the elements
of the original pairwise comparison matrix.

It is easy to conceive that among all sequences of principal minors, there can
be one that provides the minimum of such total changes, both due to a smaller
number of negative minors and due to smaller corrections in each case. The
search for such sequences in the general case is a combinatorial problem.

On the other hand, the order, in which the elements of a set Ω are scanned
does not affect the properties of the matrix of their pairwise comparisons,
S(m,m). In particular, it is known that simultaneous rearrangement of the
rows and columns of a matrix S(m,m) does not change its eigenvalues.
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According to Sylvester’s law of inertia (Horn and Johnson, 1990), the number
of sign changes when considering the determinants of principal minors coincides
with the number of negative eigenvalues of the matrix S(m,m).

Consequently, the number of changes in the signs of the determinants when
considering the principal minors defines the number of elements of the set that
cause metric violations.

However, in practice, the number of metric violations usually appears to
be bigger and even significantly bigger. In this case, violations are usually
grouped so that some of them cause a trail of subsequent violations after they
are corrected.

Note that Sylvester’s law of inertia establishes the number of sign changes
of determinants in the sequence of principal minors, but does not determine the
location of such changes.

Let us find the corresponding ordering and renumber the elements of the set
Ω = {ω1, ..., ωm} so that changes in the signs of the determinants Sk, k = 1, ...,m
occur generally at the end in the sequence of principal minors. Let the matrix
S(m,m) have v negative eigenvalues. In an ideal case, the corresponding order-
ing gives a sequence of minors, where for the first time the value Sm−v+1 < 0
is negative, and the signs of the remaining v − 1 determinants start to alter-
nate. Therefore, no more than v elements of the set violate the metricity. We
introduced the term “the localization of negative eigenvalues in a non-positive
definite matrix” (Dvoenko and Pshenichny, 2018).

The ordering is performed by the following locally optimal procedure. Let
the matrix S(m,m) determine the corresponding sequence of principal minors.
The determinant Sm of this matrix S(m,m) is equal to the product of its eigen-
values, where for an odd number of negative eigenvalues there is Sm < 0, and
for an even number there is Sm > 0.

Let us look at the determinants of the principal minors in the opposite
direction, Sk, k = m, ..., 1. At the current step k, we calculate the determinants
(Sk)

q
q, q = 1, ..., k of all additional minors S(k, k)qq of the current principal minor

S(k, k). Let us find among them a minor S(k, k)qkqk , whose determinant (Sk)
qk
qk

changes its sign relative to Sk and appears to be the biggest in absolute value.
If the sign does not change, then we find only the determinant (Sk)

qk
qk

with the
largest absolute value. Let us rearrange the row and column with the index qk
to the last place k in the minor S(k, k).

The resulting permutation of the rows and columns of the matrix S(m,m)
determines the optimal sequence of its principal minors, where the values of
their determinants decrease in absolute value most slowly, and the alternation
of their signs is concentrated at the end of the sequence.

However, it usually appears that the alternation of signs at the end of such
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a sequence occurs over an interval greater than v, because sometimes it is not
possible to obtain a change in the sign of the determinant at every step of the
procedure considered.

Let u be the additional number of determinants without changing signs for
all v negative eigenvalues. Then, in the procedure discussed above, no more
than v + u last minors at the end of the optimal sequence are adjusted.

As a result, elements of the set that violate the metricity are concentrated at
the end of the optimal sequence, reducing, often significantly, the total number
of necessary corrections to the original similarity matrix.

In general, a technique for correcting the results of pairwise measurements
is presented here, where metric violations are associated with specific elements
of the set. This is a new understanding of the role of negative eigenvalues, in
contrast to, for example, the discrete Karhunen-Loeve expansion (Tou and Gon-
zalez, 1977). In order to reduce the number of corrections, it is first necessary to
determine the optimal sequence of the elements of the set, and then produce the
correction using one of the methods described above. The measurement results
are understood as scalar products. The case of correction of pairwise differences
is discussed below.

3.4. Direct change of eigenvalues

Recall that the well-known Karhunen-Loeve decomposition is an example of a
spectral decomposition of a square matrix in a system of eigenvectors.

Let the set Ω = {ω1, ..., ωm} be represented by a normalized matrix S(m,m)
of pairwise comparisons with elements sii = 1 on the main diagonal and the
values of other elements 0 ≤ sij < 1 or −1 < sij < 1.

The spectral decomposition of a non-singular matrix S(m,m) has the form
S = ALAT , where A(m,m) = (a1, ...,am) is the orthogonal matrix ATA =
AAT = E of unit-length column eigenvectors ai = (a1i, ..., ami)

T , |ai| = 1,
E(m,m) = diag(1, ..., 1), L(m,m) = diag(λ1, ..., λm), where λ1 ≥ ... ≥ λm.

As before, the original data matrix X(m,n), representing the set Ω =
{ω1, ..., ωm}, in the corresponding feature space of dimension n, is not avail-
able. Otherwise, there is no problem with calculating the scalar products
S(m,m) = (1/n)XXT .

It is easy to see that as a result of the decomposition of the non-singular
normalized matrix S, we obtain L = ATSA, where trL = tr S = m.

Note that traditionally in data analysis, the decomposition in a system of
orthogonal vectors is applied to the correlation matrix of features R(n, n) =
(1/m)XTX with eigenvalues µ1 ≥ ... ≥ µn targeted at reducing the dimension-
ality of the space of eigenvectors of the matrix R(n, n) to a value n′ < n. In
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particular, an incorrect matrix R(n, n) has negative eigenvalues. Therefore, a
projection of the objects of the original data matrix X(m,n) into a new orthog-
onal subspace of dimension n′ < n is applied. The new dimension is determined
only by the positive eigenvalues µ 1 > ... > µn′ > 0 of the original orthogonal
decomposition.

This is the well-known discrete Karhunen-Loeve expansion (Tou and Gon-
zalez, 1977), which is widely used in data analysis. The new correlation matrix

is diagonal R′(n′, n′) = diag(µ 1, ..., µn′), where tr R′ =
∑n′

i=1 µi = n′ < n.
Note that to project objects into a new subspace, the matrix X(m,n) is needed
to obtain a new data matrix X ′(m,n′). In this case, the total variance of the
normalized data is reduced to n′ < n.

Unlike the traditional approach, the spectral decomposition is used here for
a set, whose elements are represented only by pairwise comparisons (i.e., scalar
products) as S(m,m). It does not matter here whether the elements of the set
are objects or features (attributes).

In the case of metric violations in the configuration of elements, the spectral
decomposition L = ATSA of the matrix S(m,m) has negative eigenvalues. To
eliminate such violations, it is proposed here not to reduce the original pairwise
comparisons, but to directly replace the negative eigenvalues with suitable pos-
itive values, resulting in a new matrix L̃(m,m) of the same dimension. After
that, the matrix S̃(m,m) of pairwise comparisons is restored by the transfor-
mation S̃ = AL̃AT .

Note that the new matrix, S̃(m,m), appears to be non-normalized with
diagonal elements bigger than the unit value. That is why trL̃ = tr S̃ > m. Let
us normalize its values ŝij = s̃ij/

√

s̃iis̃jj and obtain the final decomposition of

the matrix Ŝ(m,m), where Ŝ = ÂL̂ÂT , trL̂ = tr Ŝ = m.

It is quite obvious that based on this approach we can modify any eigen-
values, not just the negative ones. The question is what do we want to get as
a result? Obviously, to avoid uncontrolled modifications, suitable restrictions
must be formulated. For example, it is necessary to provide an appropriate level
of conditionality for the modified pairwise comparison matrix (this problem is
discussed below).

Note that the matrix of pairwise similarity may have other types of viola-
tions, for example, when non-diagonal elements exceed the diagonal values in
absolute value, another case is the asymmetry. Direct correction of the eigen-
values may eliminate such violations, too.
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4. Correction of violations in arbitrary pairwise compar-

isons

4.1. Offset of the origin

Unfortunately, for arbitrary matrices of pairwise comparisons (similarity or dis-
similarity), we cannot form a special coordinate space according to the theorem
on metric violations, demonstrated above.

Let the set Ω = {ω1, ..., ωm} be represented by a non-normalized matrix
S′(m,m) of pairwise similarities. Based on the law of cosines, we consider
similarities as scalar products s′ij = (d20i + d20j − d2ij)/2 concerning the origin,
which is represented by the element ω0, where d0i = d(ω0, ωi), and the mutual
distances dij = d(ωi, ωj) between the elements ωi and ωj .

Note that such a matrix S′(m,m) represents the configuration of a set in a
metric space by its distances to the origin, since s′ii = d20i. Before correction, the

matrix S′(m,m) is normalized by the transformation sij = s′ij/
√

s′iis
′
jj . The

normalized matrix S(m,m) now represents only the normalized configuration,
where the elements of the set are located on the unit hypersphere.

Assuming that the distances to the origin remain unchanged after the cor-
rection, the original matrix S′(m,m) is restored by an inverse transformation.

Let the set Ω = {ω 1, ..., ωm} be represented by a matrix D(m,m) of pair-
wise differences, which are conveniently considered as distances. To understand
whether there are metric violations, it is necessary to convert distances into
scalar products. To do this, we must specify the origin of the coordinates,
which can be located anywhere in the metric space.

Let us define it by the Torgerson’s method of principal projections (Torger-
son, 1958), where the origin of coordinates as the element ω0 is represented by
its distances to other elements of the set Ω = {ω1, ..., ωm} and is located at its
center

d20i =
1

m

m
∑

p=1

d2ip −
1

2m2

m
∑

p=1

m
∑

q=1

d2pq.

In the case of metric violations, such a representation may be inappropriate,
since some distances from the origin, located in the center, to other elements of
the set may turn out to be complex. This happens if the second term exceeds the
first. To prevent this from happening, we need to move the origin of coordinates,
for example, to move it beyond the convex hull of the set. This position of the
origin determines its correct distances to the elements of the set and the correct
normalized scalar products
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sij =
1

2d0id0j

(

d20i + d20j − d2ij
)

.

Let us look at the first offset method. Namely, let us move the origin of
coordinates beyond the convex hull of the set. The second term in Torgerson’s
formula above determines the dispersion σ2 of the set relative to the origin ω0,
since

σ2 =
1

m

m
∑

i=1

d20i =
1

m

m
∑

i=1

(

1

m

m
∑

p=1

d2ip −
1

2m2

m
∑

p=1

m
∑

q=1

d2pq

)

=
1

2m2

m
∑

i=1

m
∑

p=1

d2ip.

Let us consider the distances dip, p = 1, ...m from the object ωi to other
elements of the set as components of a vector in m-dimensional space. Then,
the first distance in Torgerson’s formula represents the squared norm of the
mean vector in such a space. We assume that the object ω0′ is represented by
the distances d20′i, i = 1, ...,m to the other elements of the set. Consequently,
the origin of coordinates, as the Torgerson’s center, is represented as the element
ω0 by distances d20i = d20′i−∆ to other elements, where ∆ = σ2. The value of ∆
should be determined in order to move the Torgerson’s origin beyond the convex
hull of the set. Then the correct values determine the interval 0 ≤ ∆ ≤ σ2.

It is easy to see that for ∆ = 0 the origin of the coordinates is placed
outside of the convex hull of the set. This corresponds to the idea that the
dispersion of the set is small compared to the distances to the origin. In this
case, all distances are positive and real. This property becomes stronger if the
origin of the coordinates is moved even further for ∆ < 0. On the contrary,
for ∆ > σ2, a non-metric configuration obligatorily arises since some distances
squared d20i = d20′i −∆ must become negative and distances themselves become
complex.

As a result, to correct the difference matrix, it is necessary to obtain a nor-
malized matrix of scalar products S(m,m) relative to the corresponding origin,
modify scalar products, and restore the correct difference matrix D(m,m) based
on the inverse transformation d2ij = sii + sjj − 2sij = d20i + d20j − 2sijd0id0j .

In practice, other irregularities often arise that also require correction, even
if metric correction is not required. Usually, we need to correct asymmetry
or incorrect values of the non-diagonal elements of the similarity matrix that
exceed the values of some of the diagonal elements.

In the first case, for symmetrization, the transformation d̃ij = (dij + dji)/2
for differences and the transformation s̃ij = (sij + sji)/2 for similarities are
usually performed. The asymmetry usually results in complex eigenvalues, and
its correction can result in negative eigenvalues.
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If some of the non-diagonal elements exceed in module the values of the
corresponding diagonal elements in the similarity matrix, then during normal-
ization they exceed the unit in a module. It should be noted that this can
happen if there was an incorrect difference matrix before. Such a matrix may
appear, for example, due to the peculiarities of measuring (calculating) differ-
ences in pairs of objects or due to errors. If the similarity matrix is immediately
obtained as a result of measurements (calculations), then such rough errors are
usually corrected immediately. A simple correcting method is as follows.

Let us consider the matrix of differences D(m,m), which we consider to be
a matrix of distances. Let us transform it to a normalized matrix of scalar
products S(m,m) relative to the origin of coordinates constituted by an object
ω0:

d20i =
1

m

m
∑

p=1

d2ip − σ2, i = 1, ...,m;

sij =
1

2d0id0j

(

d20i + d20j − d2ij
)

; i, j = 1, ...,m.

As noted, the second term in the expression for distances represents the disper-
sion of the set relative to the origin ω0. In the case of violation, both terms may
turn out to be inconsistent, where, for example, the second will exceed the first.

Let us represent the distances in the form d20i = 1
m

m
∑

p=1
d2ip −∆, i = 1, ...,m.

When ∆ = σ2, we obtain Torgerson’s formula.

When we assume ∆ = 0, the origin of coordinates is far outside of the
set, and the dispersion of its elements can be ignored. In this case, the scalar
products sij are already corrected. In general, not all of them become positive
if it appears that d20i + d20i < d2ij . This means that in a given direction to the
origin, the “width” of the set appears greater than the distance to the origin.
For the entire set of elements to be in the same quadrant of the metric space,
we need to move the origin of coordinates even further beyond the convex hull
of the set, that is, to take ∆ < 0. Next, the corrected distances are restored, as
before, in the form

d2ij = sii + sjj − 2sij = d20i + d20j − 2sijd0id0j .

The second offset method is as follows. Here the origin of coordinates ω0 is not
moved out of the convex hull of the set, but remains inside it, to be slightly
moved due to a slight change in dispersion

d20i =
1

m

m
∑

p=1

d2ip − ασ2, 0 ≤ α ≤ 1, i = 1, ...,m.
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It is easy to see that for α = 0 we obtain the origin of coordinates located
beyond the convex hull of the set. It is necessary to specify such α that the
non-diagonal scalar products are corrected and do not exceed by their module
the unit. It should be noted that such corrections do not eliminate the negative
eigenvalues if there are metricity violations.

4.2. Experiment on correction of pairwise comparisons

Experimental data are presented in the form of the list of 14 investment projects
(Gazprom, 2000), compiled based on materials from the open press for the year
2000. All projects are ordered according to eight criteria of positive and negative
effects.

To use these data for the experiment in this work, for each criterion, the
most preferred project is given the rank of 1, the next one is given the rank
of 2, etc. Some projects have the same rank, so in Table 1 below the so-called
standard ranks are used.

Table 1. Project ranks

Projects\Criteria 1 2 3 4 5 6 7 8

1 South Pars 5 4 14 8 11 12 4.5 5.5

2 Blue Stream 1 1 3.5 4 12.5 14 9.5 10

3 Yamal-Europe 3 3 8.5 3 14 3 11 7

4 Pskov Power Plant 9 7 10 8 9 4.5 4.5 2

5 Kuzbass Methane 8 9.5 5.5 8 2.5 7.5 4.5 11

6 Prirazlom Field 6 6 8.5 8 9 9 12.5 13

7 Transbalkan Pipeline 10 5 12.5 13.5 6 4.5 4 4

8 Kondopoga Pipeline 11 12.5 11 1 2.5 2 4.5 8.5

9 Ecology 13 12.5 5.5 12 2.5 2 4.5 3

10 Energy degasification 12 12.5 1 8 12.5 6 14 1

11 Shtokman Field 2 2 2 2 6 7.5 12.5 14

12 Vehicle Gasification 4 8 12.5 8 9 10.5 4.5 5.5

13 Space Communications 7 9.5 7 8 6 10.5 4.5 12

14 Corporate ACS 14 12.5 3.5 13.5 2.5 2 9.5 8.5

Each ranking is represented by a relationship matrix Bi, i = 1, ...,m, m = 8,
with the size N ×N, N = 14 of the elements

bikl =







1, ak ≻ al
0, ak ∼ al

−1, ak ≺ al

,
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where ak is a project with the number k, the symbol “≻” means “better”, the
symbol “≺” means “worse”, and the symbol “∼” means “the same”. Based on
the relationship matrices, the distances between rankings are calculated as

dij =
1

2

N
∑

k=1

N
∑

l=1

|bikl − bjkl| ; i, j = 1, ...,m,

and are represented by the matrix:
























0 27 98 50 131 142 102 124
27 0 105 65 128 123 101 113
98 105 0 88 83 82 128 106
50 65 88 0 109 102 96 112
131 128 83 109 0 55 61 101
142 123 82 102 55 0 86 76
102 101 128 96 61 86 0 74
124 113 106 112 101 76 74 0

























.

It is important to note the following. Rankings, as discrete structures immersed
in Euclidean space, are represented by a set of isolated objects in it, since there
are no other objects between them. The distances between rankings are also
discrete. Therefore, it is necessary to check whether the configuration of objects
given by distances D(m,m) can be correctly immersed in a continuous metric
space. Correct immersion allows for generation of new objects (Dvoenko and
Pshenichny, 2021) that are not presented before (averages, closest, or other
objects that have some extreme properties).

As a result, the correct immersion of discrete objects in a metric space makes
it possible to use the well-known or new cluster analysis and machine learning
algorithms for data processing (Dvoenko, 2009), and not be obliged to apply
exhaustive discrete optimization methods. In general, this problem is known
as the metrization of binary relations (Kemeny and Snell, 1963; Mirkin, 1974;
Litvak, 1982). This, however, is a topic for a separate discussion.

Let us place the origin of coordinates at the center of the set of rankings, as
shown above, and obtain a normalized, but incorrect matrix of scalar products,
since it contains elements that exceed by their module the values of the diagonal
elements:
























1 0.927 0.002 0.722 −0.795 −1.128 −0.190 −0.524
0.927 1 −0.234 0.449 −0.842 −0.717 −0.263 −0.357
0.002 −0.234 1 −0.041 0.216 0.228 −1.059 −0.208
0.722 0.449 −0.041 1 −0.616 −0.428 −0.399 −0.602
−0.795 −0.842 0.216 −0.616 1 0.651 0.534 −0.102
−1.128 −0.717 0.228 −0.428 0.651 1 0.059 0.371
−0.190 −0.263 −1.059 −0.399 0.534 0.059 1 0.356
−0.524 −0.357 −0.208 −0.602 −0.102 0.371 0.356 1

























.
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The first correction method, based on moving the origin of coordinates out of
the convex hull of the set gives the correct matrix, yields:

























1 0.961 0.473 0.858 0.055 −0.116 0.402 0.176
0.961 1 0.370 0.741 0.062 0.130 0.388 0.290
0.473 0.370 1 0.518 0.603 0.611 0.010 0.371
0.858 0.741 0.518 1 0.257 0.346 0.392 0.241
0.055 0.062 0.603 0.257 1 0.824 0.776 0.428

−0.116 0.130 0.611 0.346 0.824 1 0.550 0.675
0.402 0.388 0.010 0.392 0.776 0.550 1 0.680
0.176 0.290 0.371 0.241 0.428 0.675 0.680 1

























.

Here, some of the scalar products appeared to be negative, but we do not move
the origin of coordinates even further, because it does not matter now.

It turned out that in this configuration there are still metric violations, since
the corrected matrix has some negative eigenvalues: 4.026, 2.167, 1.058, 0.579,
0.299, 0.167, –0.097, –0.198.

Table 2 shows the original and the optimal sequences of principal minors
according to the optimal permutation. As we can see, there are two alternations
of the signs of the determinants according to the number of negative eigenvalues.
In the case of the optimal permutation, two corrections have been produced for
the original 7th rank (now also before the last) and for the original 1st rank
(now occupying the last position).

Table 2. Determinants of principal minors

Original sequence Determinants Optimal sequence Determinants
1 1 2 1
2 0.0768 5 0.9962
3 0.0526 8 0.7443
4 0.0090 3 0.3901
5 0.0023 4 0.1451
6 -0.0143 6 0.0236
7 0.0045 7 -0.0149
8 0.0051 1 0.0051

The modification eliminates negative eigenvalues, so that we obtain: 3.946,
2.050, 0.959, 0.551, 0.270, 0.149, 0.047, 0.029. After the inverse transformation,
we obtain the correct distance matrix:
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0 48.35 105.54 61.46 130.36 133.63 108.52 124.25
48.35 0 105 65 128 123 101.01 113
105.54 105 0 88 83 82 121.06 106
61.46 65 88 0 109 102 98.75 112
130.36 128 83 109 0 55 77.26 101
133.63 123 82 102 55 0 83.05 76
108.52 104.01 121.06 98.75 77.26 83.05 0 81.24
124.25 113 106 112 101 76 81.24 0

























.

The second correcting method, based on a small offset of the origin for α = 0.8,
also yields the correct matrix:

























1 0.938 0.153 0.767 −0.521 −0.801 0.008 −0.302
0.938 1 −0.035 0.551 −0.545 −0.437 −0.041 −0.148
0.153 −0.035 1 0.156 0.344 0.355 −0.693 −0.020
0.767 0.551 0.156 1 −0.307 −0.153 −0.110 −0.308
−0.521 −0.545 0.344 −0.307 1 0.709 0.617 0.070
−0.801 −0.437 0.355 −0.153 0.709 1 0.228 0.470
0.008 −0.041 −0.693 −0.110 0.617 0.228 1 0.465
−0.302 −0.148 −0.020 −0.308 0.070 0.470 0.465 1

























.

Since there are metricity violations in the configuration again, this corrected
matrix also has negative eigenvalues: 3.585, 1.795, 1.372, 0.940, 0.520, 0.278,
-0.161, and -0.330. The correction eliminates negative eigenvalues, so that we
get: 3.423, 1.650, 1.245, 0.910, 0.459, 0.239, 0.048, 0.027. After the inverse
transformation, we again obtain the correct distance matrix:

























0 45.93 105.42 59.44 130.21 134.19 108.06 124.22
45.93 0 105 65 128 123 103.62 113
105.42 105 0 88 83 82 121.57 106
59.44 65 88 0 109 102 98.25 112
130.21 128 83 109 0 55 76.10 101
134.19 123 82 102 55 0 82.98 76
108.06 103.62 121.57 98.25 76.10 82.98 0 80.79
124.22 113 106 112 101 76 80.79 0

























.

As a result, two objects introduce metric violations, these are the first and the
seventh ranking. The corrected distance matrices are almost identical. Note
that the optimal correction method allows for immediate correction of the in-
correct scalar product matrix.
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5. Optimization of the conditionality of pairwise compar-

isons

5.1. The problem of conditionality

The problem of matrix conditionality is a well-known problem. Its importance
is determined by the fact that the traditional sources of coefficient matrices are
usually systems of equations and inequalities, which arise when solving applied
problems.

The condition number cond(A) of a certain matrix A shows the degree of its
degeneracy. If, for example, in a system of linear equations Ax = b the matrix
A is ill-conditioned, then small changes in A or b cause large, incommensurate
changes in the solution x. If A is well conditioned, then small changes in A or
b produce only correspondingly small changes in the solution x.

A well-conditioned matrix is characterized by a small condition number. For
example, the identity matrix E(m,m) = diag(1,. . . ,1) has the best conditional-
ity, namely cond(E) = 1, where m is the dimension of the matrix.

Consider a positive definite square matrix S(m,m) of pairwise comparisons.
It is known that its condition number can be defined as the product of norms of
this matrix and of its inverse, cond(S) = ||S|| · ||S−1||. The norm of a matrix
can be defined in different ways, for example, as the maximal module of the
eigenvalue, i.e. ||S|| = max |λ|. Then the norm of the inverse matrix is ||S−1|| =
1/min |λ|, because the eigenvalues of the inverse matrix are the inverses of the
eigenvalues of the original matrix. Consider for a positive definite matrix S its
condition number as cond(S) = λ 1/λm, where λ 1 = λmax, λm = λmin. The
appearance of a negative eigenvalue does not suit us, because in this case, we
consider the conditionality to be negative.

The problem of minimizing the matrix conditionality is inevitably associ-
ated with changing the matrix S(m,m) in one way or another. This imposes
restrictions on the degree of modifications of the matrix S(m,m) elements. It
may become that the required level of conditionality while minimizing it, is in
conflict with the magnitude of change in the elements of the matrix S, which
is unacceptable in practice. For example, this happens in the case of strong
distortions in experimental data, with which the researcher cannot agree.

On the other hand, the solution to the problem

cond(S) = λ 1/λm → min

is not directly related to the elements of the matrix S(m,m). It is only known
that

detS=
∏m

i=1 λi and trS =
∑m

i=1 λi, where trS =m for the normalized matrix S.
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We can only state that modification of the elements sij while tr S = m
remains unchanged should lead to such a redistribution of the eigenvalues that
λmax = λ 1 > 0 decreases and λmin = λm > 0 increases, decreasing cond(S).
Additionally, the degree of redistribution of eigenvalues should not lead to un-
acceptably large changes to the original pairwise comparison matrix.

5.2. Optimization of conditionality

Methods for minimizing the condition number of matrices are known, see, for
instance, Boyd, Ghaoui, Feron and Balakrishnan (1994). For example, a solution
method is to represent the original matrix (generally rectangular) as a part of
a decomposition that includes left and right non-singular diagonal matrices. As
a result, the problem reduces to the generalized eigenvalue problem (GEVP).

Let us consider a simple heuristic approach to minimizing the condition
number of a positive definite normalized scalar product matrix S(m,m).

Instead of looking for a representation of the original matrix based on the
optimal decomposition and, ultimately, optimizing its conditionality by mini-
mizing the maximal eigenvalue, here we propose, on the contrary, to maximize
the minimal eigenvalue. If the eigenvalues are ordered in descending order, then
it is natural that the minimal eigenvalue cannot be greater than the previous
one. Therefore, we propose the direct changing of the smaller eigenvalues, or-
dered in descending order.

It is known that the matrix S(m,m) of scalar products is stratified into con-
tributions from eigenvectors proportional to the corresponding eigenvalues. Usu-
ally, the distribution of eigenvalues in descending order is not uniform, namely –
a small part of large values holds the bulk of the variance of the normalized data,
which is equal to the dimensionality m of the metric space. The contributions
from the small eigenvalues are very limited under these conditions. Therefore,
their modification does not lead to a significant change in the original matrix of
pairwise comparisons.

Here, for the matrix S(m,m) of scalar products, it is proposed to increase
the small eigenvalues, increasing the contributions of their corresponding eigen-
vectors to the variance of the normalized data. Since the sum of the eigenvalues
is constant and equal to m, then the contribution of large eigenvalues decreases.
Consequently, the value of λ 1 also decreases, which, in total, leads to a de-
crease in the conditionality cond(S) = λ 1/λ m. Let us note at this point that
it does not matter to us whether the elements of the set considered are objects
or attributes.

Let us consider the following procedure. Define for the original matrix
S(m,m) an ordered sequence of its eigenvalues λ 1 > ... > λm > 0 and its
conditionality cond(S) = λ 1/λ m.
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Let us look at the eigenvalues one by one from the end, λ i, i = m− 1, ..., 1.
Let us define new values, λj = λi, j = i + 1, ...,m; i = m − 1, ..., 1 for the
eigenvalues λj , j = i+ 1, ...,m.

As before, L(m,m) = diag(λ1, ..., λm) is the matrix of eigenvalues, while
A(m,m) = (a1, ...,am) is the matrix of normalized eigenvectors ai = (ai1, ..., aim)T ,
aTi ai = 1, aTi aj = 0, i 6= i.

At the current step i, after determining new corresponding eigenvalues, we
obtain the matrix L̃(m,m) = diag(λ̃1, ..., λ̃m) and restore the matrix S̃ =
AL̃AT . After such a restoration tr S̃ = tr L̃ > m, where the diagonal ele-
ments are s̃ii > 1. After the transformation ŝij = s̃ij/

√

s̃iis̃jj we obtain a

normalized matrix Ŝ(m,m), where tr Ŝ = m.

Let us perform the decomposition again and obtain L̂ = ÂT ŜÂ, where
tr Ŝ = tr L̂ = m. The method of searching for such a decomposition gives
again an ordered sequence of different eigenvalues λ̂1 > ... > λ̂m > 0, where
L̂(m,m) = diag(λ̂1, ..., λ̂m). Let us define a new conditionality cond(Ŝ) =

λ̂1/λ̂m < cond(S). Let us repeat the process at the next step i again for the
original matrix S(m,m).

It is evident that at the last step, i = 1, all new eigenvalues appear to be
the same λ̃1 = λ̃2 = ... = λ̃m. After restoration S̃(m,m) and normalization
Ŝ(m,m), we obtain the identity matrix Ŝ(m,m)=E(m,m), where cond(Ŝ)=1.
In this case, the matrix Ŝ(m,m) has a minimal conditionality, but it is, defi-
nitely, radically different from the original matrix S(m,m).

Therefore, it is necessary to decide at what step in determining new eigen-
values we need to stop. It is proposed to control the degree of change in smaller
eigenvalues using a heuristic procedure based on checking the statistical signif-
icance of the values of the elements of the normalized matrix. To do this, we
consider its elements as correlation coefficients when testing the corresponding
statistical hypotheses about their significance.

5.3. Stop condition of the optimization procedure

Let us consider a positive definite normalized similarity matrix S(m,m). We
consider the mutual normalized scalar products of the elements of the set as
being the correlation coefficients. Let us consider the well-known Student’s t-
test for checking the statistical significance of a correlation. In the original
matrix S, some relations sij appear to be significant. As it is shown above, the
procedure for minimizing the condition number of the matrix S leads, ultimately,
to the identity matrix. But in this case, all scalar products between the elements
of the set appear not to be significant.

Thus, the condition number optimization procedure reduces the number of
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significant relations. Under these conditions, the stopping criterion is a situa-
tion, where the number of significant relations very clearly and perhaps even
sharply decreases.

According to the Student’s criterion, it is necessary to check the significance
of m(m-1)/2 elements sij , i <j, in the matrix S(m,m). Let xq = sij , i =
1,. . . ,m-1, j = i+1,. . . , m, that is, q = 1,. . . , m(m − 1)/2. If the value of the
Student’s t-test is significant, then

|T | = |xq

√
r − 2/

√

1− x2
q| > tα,r−2,

where r is the sample size, r − 2 is the number of degrees of freedom, and
α = 0.01 is the level of significance of the one-sided critical point.

Let

T 2 = x2
q(r − 2)/(1− x2

q).

It is true that xq = xcrit at the critical point. Then we get

t2crit = x2
crit(r − 2)/(1− x2

crit).

Let us apply the following transformation:

x2
crit(r − 2) = t2crit(1− x2

crit) = t2crit − t2critx
2
crit.

Next, we get

x2
crit(r − 2 + t2crit) = t2crit, and xcrit =

√

t2crit/(t
2
crit + r − 2).

If |xq| > xcrit, then the relationship xq is significant.

However, the sample size r, which is used in the Student’s t-test (it can be
interpreted as the number of trials in which the pairs of corresponding observed
values are compared), is unknown to us in this case. So, we do not know
how many times the pairs of certain quantities are compared for purposes of
calculating the relationship value sij .

When analyzing the critical values of the Student’s criterion, we assume
that the unknown sample volume (unknown number of tests) can be defined
in the following manner: the standard table of critical points of the Student’s
t-distribution usually contains tabulated values for up to 120 degrees of freedom.
Therefore, we believe that a sample size of r ≥ 122 could be statistically suffi-
cient. On the other hand, it is believed that for a set of at least 30 independent
random variables the properties of a normal probability distribution already ap-
pear. Since the Student’s t-distribution is based on the normal distribution, we
believe that the sample size r ≥ 32 can be considered statistically small. Then,
the sample size r ≥ 62 can be considered as average. For a one-sided critical
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Table 3. Critical values

Sample (number of trials) Size r ≥ tcrit xcrit

Sufficient 122 2.33 0.2080
Average 62 2.39 0.2948
Small 32 2.46 0.4097

region at the significance level α = 0.01, the critical values for different sample
sizes are shown in Table 3.

Then, for each value of r, we establish the diagrams of changes in the number
of significant relations at all steps i = m-1,. . . ,1 of the conditionality optimiza-
tion procedure and determine the threshold, after which a sharp drop in the
number of significant relations occurs.

6. Experiments on conditionality optimization

In the first example, we consider the data from the psychologist V. D. Nebyl-
itsyn (Nebylitsyn, 1990) on the experiments, carried out in the 1960s to study
the influence of rhythmic light flashes on human brain. His experimental data
are represented by the correlation matrix S(11,11) of statistical relationships
between the energy of vibrations at 11 different frequencies, representing, re-
spectively, theta-rhythms (1 – 3), low-frequency (4 – 5), and high-frequency
alpha-rhythms (6 – 7), as well as beta-rhythms (8 – 11) of a brain on electroen-
cephalograms:















1 0.562 0.568 0.152 0.347 0.250 0.264 −0.020 −0.212 −0.086 −0.076

0.562 1 0.784 0.057 0.196 0.218 0.009 −0.017 −0.002 0.163 0.284

0.568 0.784 1 0.288 0.475 0.264 0.066 0.144 0.114 0.228 0.151

0.152 0.057 0.228 1 0.686 0.293 0.034 0.048 −0.069 −0.064 0.175

0.347 0.196 0.475 0.686 1 0.429 0.070 0.152 0.036 0.028 0.216

0.250 0.218 0.264 0.293 0.429 1 0.788 0.197 0.154 0.109 0.035

0.264 0.009 0.066 0.034 0.070 0.788 1 0.109 0.054 −0.002 −0.018

−0.020 −0.017 0.144 0.048 0.152 0.197 0.109 1 0.807 0.830 0.699

−0.212 −0.002 0.114 −0.069 0.036 0.154 0.054 0.807 1 0.904 0.728

−0.086 0.163 0.228 −0.064 0.028 0.109 −0.002 0.830 0.904 1 0.768

−0.076 0.284 0.151 0.175 0.216 0.035 −0.018 0.699 0.728 0.768 1















.

This matrix has ten positive eigenvalues, namely 3.636340, 2.827085, 1.611613,
1.358204, 0.515165, 0.412792, 0.278171, 0.164165, 0.151054, 0.069977, and the
last is –0.024566.

Replacing a negative eigenvalue with a positive value very close to zero gives,
after normalization, a positive definite matrix with eigenvalues equal 3.629217,
2.821157, 1.605834, 1.355937, 0.514139, 0.411444, 0.277702, 0.163727, 0.150881,
0.069932, 0.000030, where the condition number is 120973.9. It is easy to see
that this matrix differs slightly from the previous one:
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Figure 1. Numbers of statistically significant relations for the “Rhythms” data
set















1 0.558 0.568 0.152 0.346 0.251 0.263 −0.021 −0.212 −0.086 −0.074

0.558 1 0.776 0.058 0.198 0.212 0.013 −0.015 −0.0001 0.164 0.277

0.568 0.776 1 0.286 0.472 0.267 0.063 0.142 0.112 0.227 0.154

0.152 0.058 0.286 1 0.686 0.291 0.035 0.048 −0.069 −0.064 0.173

0.346 0.198 0.472 0.686 1 0.425 0.072 0.153 0.037 0.029 0.212

0.251 0.212 0.267 0.291 0.425 1 0.782 0.195 0.152 0.108 0.039

0.263 0.013 0.063 0.035 0.072 0.782 1 0.110 0.055 −0.001 −0.021

−0.021 −0.015 0.142 0.048 0.153 0.195 0.110 1 0.807 0.830 0.696

−0.212 −0.0001 0.112 −0.069 0.037 0.152 0.055 0.807 1 0.904 0.724

−0.086 0.164 0.227 −0.064 0.029 0.108 −0.001 0.830 0.904 1 0.765

−0.074 0.277 0.154 0.173 0.212 0.039 −0.021 0.696 0.724 0.765 1















.

In this experiment, the sample size is unknown to us. The steps of the condi-
tion number optimization procedure are shown in Table 4 (values are rounded).
At step 0, the eigenvalues are not changed; the condition number of a positive
definite matrix S(11,11) is given.

At each step of the procedure, starting from the first, the corresponding
eigenvalues (Eval nums in the table) are changed. Next, the maximal (Max
eval) and minimal (Min eval) eigenvalues, the condition number (Cond), the
gain in conditionality (Ratio is the ratio of the initial condition number at step
0 to the condition number), the number of significant relations for three sample
sizes (Size 122, Size 62, Size 32) are determined. Changes in the number of
significant relations are also shown in Fig. 1.

A sharp drop in the number of significant relations for samples of all sizes
occurs after step 6. As a result, it is quite acceptable to reduce the condition
number to 7.503, i.e. the conditionality can be improved by approximately
16 000 times relative to the original value of 120973.9.
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Table 4. Condition numbers (”Rhythms“)

Step Eval
nums

Max eval Min eval Cond Ratio Size
122

Size
62

Size
32

0 - 3.629217 0.00003 120973.9 1 24 14 13
1 11 3.609 0.069 52.304 2313 22 14 13
2 10-11 3.536 0.145 24.386 4961 23 14 12
3 9-11 3.519 0.156 22.558 5363 22 14 12
4 8-11 3.348 0.247 13.555 8925 20 14 12
5 7-11 3.151 0.338 9.322 12977 20 14 11
6 6-11 2.986 0.398 7.503 16123 19 13 11
7 5-11 2.031 0.714 2.845 42522 6 0 0
8 4-11 1.840 0.771 2.387 50680 5 0 0
9 3-11 1.236 0.948 1.304 92771 0 0 0
10 2-11 1 1 1 120973.9 0 0 0

The pairwise comparison matrix for the condition number 52.304 is as fol-
lows:















1 0.548 0.569 0.150 0.342 0.253 0.258 −0.022 −0.214 −0.087 −0.069

0.548 1 0.754 0.062 0.205 0.195 0.024 −0.010 0.005 0.166 0.258

0.569 0.754 1 0.282 0.462 0.274 0.055 0.138 0.108 0.223 0.164

0.150 0.062 0.282 1 0.686 0.286 0.037 0.050 −0.067 −0.063 0.169

0.342 0.205 0.462 0.686 1 0.414 0.077 0.155 0.040 0.030 0.203

0.253 0.195 0.274 0.286 0.414 1 0.765 0.189 0.146 0.104 0.051

0.258 0.024 0.055 0.037 0.077 0.765 1 0.113 0.059 0.001 −0.031

−0.022 −0.010 0.138 0.050 0.155 0.189 0.113 1 0.807 0.830 0.686

−0.214 0.005 0.108 −0.067 0.040 0.146 0.059 0.807 1 0.904 0.714

−0.087 0.166 0.223 −0.063 0.030 0.104 0.001 0.830 0.904 1 0.756

−0.069 0.258 0.164 0.169 0.203 0.051 −0.031 0.686 0.714 0.756 1















.

Then, the pairwise comparison matrix for the ultimate condition number
7.503 is:















1 0.478 0.482 0.161 0.275 0.272 0.191 −0.083 −0.138 −0.067 −0.039

0.478 1 0.538 0.079 0.215 0.134 0.037 0.060 0.029 0.123 0.140

0.482 0.538 1 0.232 0.359 0.219 0.072 0.115 0.063 0.147 0.195

0.161 0.079 0.232 1 0.524 0.232 0.044 0.048 −0.028 −0.031 0.099

0.275 0.215 0.359 0.524 1 0.309 0.110 0.112 0.030 0.047 0.163

0.272 0.134 0.219 0.232 0.309 1 0.519 0.162 0.097 0.079 0.074

0.191 0.037 0.072 0.044 0.110 0.519 1 0.088 0.047 0.016 −0.038

−0.083 0.060 0.115 0.048 0.112 0.162 0.088 1 0.581 0.576 0.546

−0.138 0.029 0.063 −0.028 0.030 0.097 0.047 0.581 1 0.592 0.547

−0.067 0.123 0.147 −0.031 0.047 0.079 0.016 0.576 0.592 1 0.564

−0.039 0.140 0.195 0.099 0.163 0.074 −0.038 0.546 0.547 0.564 1















.

For a normalized matrix of scalar products S(m,m), it is known that

tr S = tr L = m,
where its eigenvalues show the distribution of data dispersion σ2 = m between
eigen directions.
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Compared to the original matrix of paired comparisons with conditionality
120973.9, the sums of the squared deviations of the values of the elements of
the two other matrices from their elements are: D = 0.006298 for conditionality
52.304, andD = 1.194265 for conditionality 7.503. Thus, relative to the variance
of the data σ2 = 11, the weighted total deviation (100%·D/σ2) is approximately
0.06%, for conditionality 52.304, and almost 11%, for conditionality 7.503, of
the data variance.

Thus, distortion of the original data by no more than 0.1% of the data
variance makes it possible to improve the conditionality by the factor exceeding
2 000 (for the conditionality of 52.304). In the extreme case, the original data
are distorted by almost 11%, allowing the conditionality to be improved at least
by the factor of 16 000 (for the conditionality of 7.503).

In the second example, we consider K. Holzinger’s data on 145 Chicago
schoolchildren, who were subject in 1935 to psychological tests in order to eval-
uate their intellectual development. Experimental data are represented by a
correlation matrix S(24, 24) of test results and are given in Harman (1976).

All eigenvalues of this matrix are positive: 8.129618, 2.075669, 1.679600,
1.507071, 1.027226, 0.941721, 0.891253, 0.811778, 0.796299, 0.707289, 0.645087,
0.546671, 0.524084, 0.513335, 0.469656, 0.401345, 0.375913, 0.367564, 0.354657,
0.312689, 0.292714, 0.281258, 0.220879, and 0.126624. The condition number
is 64.203 (rounded). Although it does not matter here, the data are considered
complex, since researchers before were unable to satisfactorily solve the so-
called problem of bi-factor analysis to identify groups of tests evaluating certain
aspects of intelligence development (Table 5 below). For more details about the
experiment a Reader is referred to Harman (1976).

In this experiment, the sample size is 145 trials. According to Table 3 of
critical values, this is a sample of sufficient statistical size. The steps of the
optimization procedure are shown in Table 6 (values are rounded). At step
0, the eigenvalues are not changed, and the condition number of the original
matrix S(24, 24) is given.

Table 5. Psychological tests

Group number Group Test numbers
1 Spatial relations 1 – 4
2 Verbal 5 – 9
3 Perceptual speed 10 – 13
4 Memory 14 – 19
5 Deduction 20 – 24
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As before, at each step of the procedure, starting from the first step, the
values of the corresponding eigenvalues (Eval nums) were changed, the maximal
(Max eval) and minimal (Min eval) eigenvalues, the condition number (Cond),
and the gain in conditionality (Ratio is the ratio of the initial condition number
at the step 0 to the condition number), the number of significant relations for
three possible sample sizes (Size 122, Size 62, Size 32) are determined. The
change in the number of significant relations is also shown in Fig. 2.

Table 6. Condition numbers (Chicago schoolchildren)

Step Eval nums Max eval Min eval Cond Ratio Size
122

Size
62

Size
32

0 - 8.129618 0.126624 64.203 1 213 137 47
1 24 8.089 0.217 37.276 1.72 213 137 47
2 23-24 8.040 0.272 29.559 2.17 212 134 46
3 22-24 8.027 0.282 28.465 2.26 212 133 46
4 21-24 7.998 0.299 26.749 2.40 212 131 45
5 20-24 7.922 0.332 23.861 2.69 211 131 40
6 19-24 7.895 0.342 23.085 2.78 210 128 40
7 18-24 7.875 0.349 22.564 2.85 210 125 39
8 17-24 7.807 0.367 21.272 3.02 209 123 35
9 16-24 7.609 0.413 18.424 3.48 206 113 30
10 15-24 7.475 0.440 16.989 3.78 205 108 24
11 14-24 7.439 0.446 16.679 3.85 202 106 24
12 13-24 7.359 0.459 16.033 4.00 201 103 21
13 12-24 7.003 0.510 13.731 4.68 194 87 12
14 11-24 6.782 0.539 12.583 5.10 189 79 8
15 10-24 6.468 0.577 11.210 5.73 175 58 5
16 9-24 6.414 0.583 11.002 5.84 172 56 1
17 8-24 6.132 0.612 10.020 6.41 149 39 0
18 7-24 5.958 0.629 9.472 6.78 135 24 0
19 6-24 5.670 0.656 8.643 7.43 111 11 0
20 5-24 4.422 0.773 5.721 11.22 14 0 0
21 4-24 4.086 0.803 5.088 12.62 0 0 0
22 3-24 3.457 0.847 4.081 15.73 0 0 0
23 2-24 1 1 1 64.203 0 0 0

In this experiment, the decrease in the number of significant relations oc-
curs more smoothly. If we focus on all sample sizes, then empirically we can
consider the threshold step to be step 12, where the number of significant rela-
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tions clearly drops. If we consider only a sample of sufficient size, then a more
conservative estimation would point to step 4, when the number of significant
relations decreased by only 1.

Figure 2. Numbers of statistically significant relations for “Chicago schoolchil-
dren” data

As a result, it is quite acceptable to reduce the condition number to 16.033,
i.e. conditionality can be improved 4 times over compared to the value of 64.203.
A more careful evaluation shows that it is quite acceptable to reduce the con-
dition number to 26.749, i.e. conditionality can be improved by the factor of
2.4.

Compared to the original matrix of paired comparisons with conditionality
64.203, the sum of squared deviations of the values of the elements of the other
two matrices from its elements is D = 0.075812 for conditionality 26.749, and
D = 1.173715 for conditionality 16.033. Therefore, relative to the variance
σ2 = 24, the weighted total deviation (100% · D/σ2) is approximately 0.3% for
condition number 26.749 and almost 5% for condition number 16.033.

Thus, the distortion of the initial data by no more than 0.3% of the variance
improves the conditionality 2.4 times (for conditionality 26.749). In the extreme
case, the original data is distorted by close to 5%, allowing the conditionality
to be improved 4 times (for conditionality 16.033).

In the third example, we consider data on the correlations of eight phys-
ical parameters measured for 305 girls in Chicago in 1935 (Harman, 1976).
The first four parameters characterize “lankiness” (height, arm span, forearm
length, lower leg length), and the next four parameters characterize “stocki-
ness” (weight, bi-trochanteric diameter, chest girth, chest width). Correlations
of these physical parameters are represented by the matrix S(8, 8):
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1 0.846 0.805 0.859 0.473 0.398 0.301 0.382
0.846 1 0.881 0.826 0.376 0.326 0.277 0.415
0.805 0.881 1 0.801 0.380 0.319 0.237 0.345
0.859 0.826 0.801 1 0.436 0.329 0.327 0.365
0.473 0.376 0.380 0.436 1 0.762 0.730 0.629
0.398 0.326 0.319 0.329 0.762 1 0.583 0.577
0.301 0.277 0.237 0.327 0.730 0.583 1 0.539
0.382 0.415 0.345 0.365 0.629 0.577 0.539 1

























.

All eigenvalues of this matrix are positive: 4.672880, 1.770983, 0.481035, 0.421441,
0.233221, 0.186674, 0.137304, and 0.096463. The condition number is 48.442.

In this experiment, the sample size is 305. According to Table 3 of critical
values, this is a sample of sufficient statistical size. The steps of the optimization
procedure are shown in Table 7 (values are rounded). As before, at step 0 the
eigenvalues are not changed, the condition number of the original matrix is
given. The change in the number of significant relations is also shown in the
diagram of Fig. 3.

Table 7. Condition numbers (Physical variables)

Step Eval
nums

Max eval Min eval Cond Ratio Size
122

Size
62

Size
32

0 - 4.67288 0.096463 48.4422 1 28 26 15
1 8 4.645 0.135 34.407 1.41 28 26 14
2 7-8 4.5799 0.1795 25.515 1.90 28 26 14
3 6-8 4.496 0.218 20.624 2.35 28 26 14
4 5-8 4.105 0.349 11.762 4.12 28 23 12
5 4-8 3.975 0.384 10.352 4.68 28 22 12
6 3-8 2.176 0.796 2.734 17.72 0 0 0
7 2-8 1 1 1 48.4422 0 0 0

A sharp drop in the number of significant relations for samples of all sizes
occurs after step 5. As a result, it is acceptable to reduce the condition num-
ber to 10.352, so that conditionality can be improved approximately 4.5 times
relative to the original value of 48.44. The pairwise comparison matrix for the
condition number 34.407 is shown below:
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1 0.823 0.806 0.855 0.467 0.397 0.302 0.383
0.823 1 0.854 0.820 0.379 0.322 0.270 0.407
0.806 0.854 1 0.795 0.373 0.318 0.238 0.346
0.855 0.820 0.795 1 0.437 0.329 0.326 0.364
0.467 0.379 0.373 0.437 1 0.761 0.728 0.627
0.397 0.322 0.318 0.329 0.761 1 0.583 0.577
0.302 0.270 0.238 0.326 0.728 0.583 1 0.539
0.383 0.407 0.346 0.364 0.627 0.577 0.539 1

























.

Figure 3. Numbers of statistically significant relations for the ”Physical va-
riables“ data

The pairwise comparison matrix for the limit condition number 10.352 is as
follows:

























1 0.614 0.608 0.611 0.362 0.321 0.276 0.360
0.614 1 0.613 0.612 0.329 0.288 0.241 0.330
0.608 0.613 1 0.607 0.312 0.271 0.224 0.314
0.611 0.612 0.607 1 0.346 0.305 0.260 0.345
0.362 0.329 0.312 0.346 1 0.578 0.567 0.560
0.321 0.288 0.271 0.305 0.578 1 0.553 0.539
0.276 0.241 0.224 0.260 0.567 0.553 1 0.527
0.360 0.330 0.314 0.345 0.560 0.539 0.527 1

























.

Compared to the original matrix of pairwise comparisons with conditionality of
48.4422, the sum of the squared deviations of the values of the elements of the
two other matrices from its elements is D = 0.003145 for the conditionality of
34.407 and D = 0.861147 for the conditionality of 10.352. Thus, relative to the
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variance σ2 = 8, the weighted total deviation (100% · D/σ2) is approximately
0.04% for the conditionality 34.407 and about 11% for the conditionality 10.352.

A well-known peculiarity of these data is that the physical parameters of the
body naturally fall into two groups of parameters that are strongly correlated
within a group and weakly correlated between groups. It is easy to see that for
all correlation matrices with conditionality from 48.4422 to 10.352, the partition
into two groups of strongly correlated features is preserved.

It should be noted that all correlations between physical parameters are
positive. Therefore, these data clearly show that improving the conditionality
of the matrix of scalar products reduces the modules of its elements. In data
mining, the mutual relationships between the elements of the set (similarity)
are ultimately analyzed. This follows from the law of cosines in Euclidean space
when the elements of a set are immersed in it without metric violations.

Therefore, from the point of view of practical requirements in data mining,
the problem of improving the conditionality of the pairwise comparison matrix
should be solved taking into account the acceptable threshold for changes in
the values of scalar products. In this case, their statistical interpretation as
variations allows us to obtain such an evaluation.

7. Conclusion

The processing of pairwise comparisons in modern conditions is often necessary
because it is convenient to present experimental data in this form. Under these
conditions, it is necessary to ensure that the processing results coincide with the
results as if the data were represented in classical vector form by measurements.

From the mathematical point of view, the elements of a set represented by
pairwise comparisons must be immersed in a metric space. Here, we discuss
the properties of experimental data represented only by pairwise comparisons.
In particular, the problems of eliminating metric violations and improving the
conditionality of pairwise comparison matrices are considered.
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Appendices

Appendix 1. Numerical example of immersion of measure-

ments and pairwise comparisons in Euclidean space

If a set of elements Ω = {ω1, ..., ωm} is represented by the measurements of
n features, then it is usually considered to be immersed in Euclidean feature
space of dimension n. For this situation, there are no problems in calculating,
for example, scalar products and developing algorithms that analyze similarity
(as positive scalar products of the vectors located in the same quadrant of a
coordinate space).

The situation when m > n appears to be preferable since in this case, we do
not face the so called ”curse of dimensionality”. This is a well-known problem,
since in data mining and machine learning problems the lack of measurements
(objects) in a multidimensional space, when there is m ≤ n, leads, for example,
to excess power of the linear decision rule. Let the objects be concentrated into
two subsets. An insufficient number of observations (objects) usually leads to
the possibility in a given space of dividing them into various pairs of subsets,
where the desired partition (concentrations to be identified) turns out to be only
one of them. Therefore, as follows from the well-known idea of VC-dimension,
it is necessary to limit the separating ability of the decision rule. It is known as
the fact that real data should not be separable in all possible ways (Vapnik and
Chervonenkis, 1974; Vapnik, 1998). Then the partitions can more reasonably
characterize in a coordinate space the configurations of the mutual arrangement
of the elements of a set.

It is known (Young and Householder, 1938) that pairwise comparisons of a
set of m elements can be immersed in a metric space of dimension no bigger
than the set cardinality m.
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If there are only pairwise comparisons represented in a matrix form, it is
not known from which coordinate space the data are extracted. In this case, we
fall into a “bad” situation, because the dimension m of a metric space always
coincides with the cardinality of the set immersed in it, represented only by
pairwise comparisons of its elements.

But, of course, we can suppose the expected dimension of the space inacces-
sible to us by the eigenvalues of the similarity matrix S(m,m). Then, if there
really is m >n, the corresponding matrix of scalar products S(m,m) appears to
be positive semidefinite since the set is located in a coordinate space of smaller
dimension than m. The rank of a matrix is less than m if some eigenvalues are
zero or “sufficiently” small, which allows them to be considered zero. What is
considered as “sufficiently” small is usually decided in an appropriate optimiza-
tion problem, such as a multidimensional scaling problem (Cox and Cox, 2001),
etc.

However, unlike the problem of multidimensional scaling, we consider a situ-
ation where we do not need to explicitly restore the so-called stimuli space. We
believe that pairwise comparisons are sufficient to analyze the relative positions
of the set elements in metrically correct configurations. But in this case, the
following contradiction arises.

On the one hand, the condition rank S ≤ m allows us to assume that
there are enough dimensions in the reconstructed space of stimuli. The goal
of multidimensional scaling is to reduce the dimensionality of data as much as
possible.

On the other hand, it is necessary to immerse the set represented by pair-
wise comparisons S(m,m) into metric space without violations. In this case, the
matrix S(m,m) is considered incorrect due to zero eigenvalues and has infinite
conditionality. Since the task to restore the coordinate space of stimuli is not
defined here, the matrix S(m,m) should be corrected to provide the full rank.
Thus, it is necessary here to solve the opposite problem and maximize the data
dimensionality. It is obvious that in this case, formally, we do not have enough
measurements. It is known that in such a situation it is necessary to imple-
ment the “regularization of a decision rule”. Then, during the correction, the
additional requirement to get the optimal conditionality should be considered
as some sort of specific regularization at the data level.

Let us consider the well-known Iris data (Fisher, 1936). They represent
measurements of four characteristics (sepal length and width, petal length and
width) from 50 plant specimens of each of three plant species (Iris Setosa, Iris
Versicolor, Iris Virginica), 150 specimens in total. It is known that the first class
(Iris Setosa) is well separated from the other two (Iris Versicolor, Iris Virginica),
which partially overlap. In the published original, the data on instances 102 and
143 are the same. Both of them belong to the species Iris Virginica. Therefore,
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in order not to lose the object, here we simply slightly changed the feature values
of instance 143. It is easy to see that the feature correlation matrices









1 −0.1176 0.8718 0.8179
−0.1176 1 −0.4284 −0.3661
0.8718 −0.4284 1 0.9629
0.8179 −0.3661 0.9629 1









,









1 −0.1178 0.8715 0.8186
−0.1178 1 −0.4278 −0.3649
0.8715 −0.4278 1 0.9629
0.8186 −0.3649 0.9629 1









and their eigenvalues before (2.9185, 0.9140, 0.1468, 0.0207) and after (2.9182,
0.9141, 0.1467, 0.0209) such a change in the data are practically the same. Note
that the variance of the normalized data is 4, with the first three eigenvalues
explaining 99.48% of the data variance. That is, the measurement data are
almost three-dimensional.

The matrix of scalar products of objects of size 150 x 150 consists of their
positive values, which can be conveniently considered as similarities (due to
its size, it is not shown here). Theoretically, it has four positive eigenvalues,
the sum of which is 150, and all the remaining 146 eigenvalues are zero. The
variance of the data is 150.

When calculating eigenvalues, different computational methods give differ-
ent results for small eigenvalues. As a result, this similarity matrix has three
large eigenvalues (rounded): 128.51048, 21.12805, and 0.36148, and for all other
eigenvalues, there is no more than 10−5 to 10−4 of data variance, where the
fourth eigenvalue does not exceed 10−6. Among the eigenvalues from the 4th to
the 150th there are positive and negative ones with a modulus of no more than
10−6, i.e. this is a computational garbage, the errors of computational methods.

But for the correction methods discussed in this paper, this similarity matrix
needs to be corrected to fit pairwise comparisons into 150-dimensional metric
space. Methods of individual optimal correction are not entirely suitable here,
because it is necessary to correct violations for 146 objects, i.e. for almost every
one of them. It is better to apply the correction to all pairwise comparisons at
once.

Therefore, we apply a correction method based on direct changes in eigen-
values. It is easy to see that due to the large difference between the third and
fourth eigenvalues by almost 5 orders of magnitude, it is necessary to imme-
diately provide a significantly smaller difference while doing the replacement.
In fact, it is possible to get rid of very small positive and negative eigenvalues
only by starting with the correction of the eigenvalues from the 5th to the 150th
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by the value 6.8·10−7 of the fourth eigenvalue, where the condition number
21493798795.15 appears to be unacceptably large.

When correcting the eigenvalues from the 4th to the 150th by a value of no
more than 10−3, the conditionality turns out to be five orders of magnitude
smaller and already appears to be equal 128599.2, where the first four eigenval-
ues have the values (rounded): 128.3846, 21.1074, 0.3611 and ≈ 10−3.

Compared to the original matrix of pairwise comparisons with theoretically
infinite conditionality, the sum of squared deviations of the values of the elements
of the modified matrix from the original values is D = 0.016418. Thus, relative
to the σ2 = 150, the weighted total deviation (100% · D/σ2) is approximately
0.01%. Hence, these pairwise comparisons become immersed in 150-dimensional
space practically unchanged.

It should be also noted that the results of cluster analysis in our experiments,
based on the specially developed k-means algorithm for pairwise comparisons
(Dvoenko, 2022), in both cases (incorrect Iris similarity matrix and corrected
matrix) appear to be the same. In both cases, the first class (Iris Setosa) is
completely separated (objects 1 through 50). Because the second (objects 51-
100) and third (obcects 101-150) classes partially overlap, they are separated
with 6 errors, where three objects from the second class (69, 73, 84) are assigned
to the third class, and three objects from the third class (111, 139, 142) are
assigned to the second class.

We showed that modifying pairwise comparisons in order to immerse them
in a multidimensional metric space allowed us to obtain the same processing
results in this case. Note that if there are only pairwise comparisons, immersing
in a metric space may require changing some values. If we imagine that they
were previously deliberately distorted, then their restoration does not at all
mean the restoration of unknown “true” values. Only those values are modified
that make it possible to eliminate metric violations.

It should be noted that this clustering result in a 150-dimensional metric
space is somewhat different from the clustering result in a 4-dimensional space of
normalized features. Here, the first class is completely separated again (objects
1-50). Next, the second and third classes are separated with 25 errors, where
11 objects from the second class (51, 52, 53, 57, 66, 71, 76, 77, 78, 86, 81) are
assigned to the third class, and 14 objects from the third class (102, 107, 114,
115, 120, 122, 124, 127, 134, 135, 139, 143, 147, 150) are assigned to the second
class.

Note that the set of objects, represented by the corrected matrix of their
scalar products of the size 150 x 150, turns out to be, in the end, correctly
immersed in the 150-dimensional metric space. The “curse of dimensionality”
can be overcome by now projecting these normalized pairwise comparisons into
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the space of the first few principal components, which explain, for example, 80%
of the variance of pairwise comparisons. In other words, we talk here about an
analogue of the well-known discrete Karhunen-Loeve expansion, which is usually
applied to a traditional data matrix.

It should be noted that this approach and further comparison of clustering
results require a separate discussion. We only note the following. On the one
hand, it is known that changing the results of measurements to obtain normal-
ized features usually affects the result of partitioning in complex cases (Duda
and Hart, 1973). On the other hand, in the case of a lack of measurements,
it is necessary to use various methods to regularize the processing results. For
example, improving the conditionality of the pairwise comparison matrix may
make sense as one of them.

Appendix 2. Numerical example of optimal corrections

Let us consider the normalized matrix of scalar products S=





1 0.5 0.5
0.5 1 −0.9
0.5 −0.9 1





and calculate its principal minors: S1 = 1, S2 = det

(

1 0.5
0.5 1

)

= 0.75,

S3 = −0.76.

Let us correct the last row and the last column entirely, so that the last
minor has the value c = 0.1. Let us calculate the inverse matrix

R =

(

1 0.5
0.5 1

)−1

=
1

0.75

(

1 −0.5
−0.5 1

)

=

(

4/3 −2/3
−2/3 4/3

)

and calculate C = 1− 0.1/0.75 = 13/15. We obtain the equations:






λ (x1r11 + x2r21) = s31 − x1

λ (x1r12 + x2r22) = s32 − x2

x2
1r11 + x1x2r12 + x2x1r21 + x2

2r22 = C
=







λ
(

4
3x1 − 2

3x2

)

= 0.5− x1

λ
(

− 2
3x1 +

4
3x2

)

= −0.9− x2
4
3x

2
1 − 4

3x1x2 +
4
3x

2
2 = 13

15

with the result x1 = 0.285487, x2 = −0.624637, λ = 0.269126. Substituting
this result into the matrix S allows us to verify that its determinant is equal to
0.1.

Let us now correct only the first element of the last row and the last column
so that again the last minor has the value of 0.1. We get the system of equations:

{

λx1r11 + s32r21 = s31 − x1

x2
1r11 + x1s23r12 + s32x1r21 + s232r22 = C

=

{

4
3λx1 − 2

3 (−0.9) = 0.5− x1
4
3x

2
1 − 4

3x1(−0.9) + 4
3 (−0.9)2 = 13

15
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with the result x1 = −0.243845, λ = −0.442427. Substituting this result into
the matrix S also allows us to verify that its determinant is equal to 0.1.

Finally, let us correct only the second element of the last row and last column
so that the last minor has the value of 0.1. We get the system of equations:

{

λx2r22 + s31r12 = s32 − x2

x2
2r22 + x2s13r21 + s31x2r12 + s231r11 = C

=

{

4
3λx2 − 2

30.5 = −0.9− x2
4
3x

2
2 − 4

30.5x2 +
4
30.5

2 = 13
15

with the result x2 = −0.430074, λ = 0.238203. Substituting this result into
the matrix S again allows us to verify that its determinant is equal to 0.1.

This example clearly shows that adjusting all pairwise comparisons (the vec-
tor correction) produces corrected values that are more similar to the original
values than it would be otherwise. Corrections for individual pairwise compar-
isons are always stronger. And, as shown in this example, they may appear to
be completely different from the original values.




