PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identifcation of sediment–basement structure in West Papua province, Indonesia, using gravity and magnetic data inversion as an Earth’s crust stress indicator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
West Papua province in eastern Indonesia is positioned in a dynamic tectonic zone along with the collision of the Australian, Pacific, and Eurasian plates. The interaction resulted in the formation of strike-slip faults such as Koor, Sorong, Ransiki, and Yapen, that are prone to earthquakes in the region. The rocks of West Papua in the northern part are a contribution to the Pacific Ocean plate consisting of ophiolite and volcanic arcs of the archipelago, even while the rocks of the Australian plate in the southern part are dominated by quaternary and siliciclastic sedimentary. It has a wide variety of resources, including oil and gas. This study combines the interpretation of regional gravity and magnetic data derived from satellite observations to identify the subsurface structure of West Papua. This is performed since most studies were conducted on the surface and did not significantly focus on the subsurface. The composition of subsurface is determined through three-dimensional (3-D) unconstrained inversion modeling using the iterative reweighting inversion of regional gravity and magnetic anomalies as a function of density contrast and magnetic susceptibility of rocks. In depth variations, gravity inversion produces density contrast ranging from −0.348 to 0.451 gr/cm3 , whereas magnetic inversion provides rock susceptibility varying between −0.363 and 0.223 SI. Gravity and magnetic inversions characterize the subduction of the Pacific Ocean plate in the north, extensive intrusion of igneous rocks, and low density-susceptibility contrast in the Bintuni basin as a source of oil and natural gas. The boundary between the sediment layer and the basement is believed to be 15–20 km deep, with rocks from the uplifted mantle in the north and a Silur-Devon aged Kemum formation in the south.
Czasopismo
Rocznik
Strony
209--226
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Papua University, Manokwari, Papua Barat 98312, Indonesia
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Department of Physics, Faculty of Sciences and Engineering, Nusa Cendana University, Nusa Tenggara Timur, Kupang 85148, Indonesia
Bibliografia
  • 1. Abderbi J, Khattach D, Kenafi J (2017) Multiscale analysis of the geophysical lineaments of the High Plateaus (Eastern Morocco): structural implications. J Mat Environ Sci 8(2):467–475
  • 2. Afshar A, Norouzi G-H, Moradzadeh A, Riahi M-A (2018) Application of magnetic and gravity methods to the exploration of sodium sulfate deposits, case study: Garmab mine, Semnan, Iran. J Appl Geophys 159:586–596. https://doi.org/10.1016/j.jappgeo.2018.10.003
  • 3. Akin U, Şeri̇foğlu Bİ, Duru M, (2011) The use of tilt angle in gravity and magnetic methods. Bull Miner Res Explor 143(143):1–12
  • 4. Baldwin SL, Fitzgerald PG, Webb LE (2012) Tectonics of the New Guinea region. Annu Rev Earth Planet Sci 40(1):495–520. https://doi.org/10.1146/annurev-earth-040809-152540
  • 5. Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geodesy 86(7):499–520. https://doi.org/10.1007/s00190-011-0533-4
  • 6. Charlton TR (2010) The Pliocene-recent anticlockwise rotation of the Bird’s head, the opening of the Aru Trough—Cendrawasih Bay Sphenochasm, and the Closure of the Banda Double Arc. http://archives.datapages.com/data/ipa_pdf/081/081001/pdfs/IPA10-G-008.htm
  • 7. Daniarsyad G, Suardi I (2017) Stress triggering among MW ≥ 6.0 significant earthquakes in Manokwari Trough. AIP Conf Proc 1857(1):020014. https://doi.org/10.1063/1.4987056
  • 8. Dentith MC, Mudge ST (2014) Geophysics for the mineral exploration geoscientist. Cambridge University Press, Cambridge
  • 9. El-Isa ZH, Eaton DW (2014) Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: classification and causes. Tectonophysics 615–616:1–11. https://doi.org/10.1016/j.tecto.2013.12.001
  • 10. Ellis RG, MacLeod IN (2013) Constrained voxel inversion using the Cartesian cut cell method. ASEG Ext Abstr 2013(1):1–4. https://doi.org/10.1071/ASEG2013ab222
  • 11. Eshaghzadeh A, Dehghanpour A, Kalantari RA (2018) Application of the tilt angle of the balanced total horizontal derivative filter for the interpretation of potential field data. Bollettino Di Geofisica Teorica Ed Applicata 59(2):161–178. https://doi.org/10.4430/bgta0233
  • 12. Gold DP, Burgess PM, BouDagher-Fadel MK (2017a) Carbonate drowning successions of the Bird’s Head, Indonesia. Facies 63(4):25. https://doi.org/10.1007/s10347-017-0506-z
  • 13. Gold DP, White LT, Gunawan I, BouDagher-Fadel MK (2017b) Relative sea-level change in western New Guinea recorded by regional biostratigraphic data. Mar Petroleum Geol 86:1133–1158. https://doi.org/10.1016/j.marpetgeo.2017.07.016
  • 14. Gómez-García ÁM, Meeßen C, Scheck-Wenderoth M, Monsalve G, Bott J, Bernhardt A, Bernal G (2019) 3-D Modeling of vertical gravity gradients and the delimitation of tectonic boundaries: the Caribbean oceanic domain as a case study. Geochem Geophys Geosyst 20(11):5371–5393. https://doi.org/10.1029/2019GC008340
  • 15. Gushurst G, Mahatsente R (2020) Lithospheric structure of the Central Andes Forearc from gravity data modeling: implication for plate coupling. Lithosphere 2020(1):8843640. https://doi.org/10.2113/2020/8843640
  • 16. Handyarso A, Padmawidjaja T (2017) Struktur Geologi Bawah Permukaan Cekungan Bintuni Berdasarkan Data Gaya Berat. Jurnal Geologi Dan Sumberdaya Mineral 18(2):53–65. https://doi.org/10.33332/jgsm.geologi.v18i2.125
  • 17. Hinze WJ, von Frese RRB, Saad AH (2013) Gravity and magnetic exploration: principles, practices, and applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511843129
  • 18. Ibraheem IM, Haggag M, Tezkan B (2019) Edge detectors as structural imaging tools using aeromagnetic data: a case study of Sohag Area, Egypt. Geosciences 9(5):211. https://doi.org/10.3390/geosciences9050211
  • 19. Ince ES, Barthelmes F, Reißland S, Elger K, Förste C, Flechtner F, Schuh H (2019) ICGEM—15 years of successful collection and distribution of globalgravitational models, associated services and future plans. Earth Syst Sci Data 11(2):647–674. https://doi.org/10.5194/essd-2019-17
  • 20. Ingram DM, Causon DM, Mingham CG (2003) Developments in Cartesian cut cell methods. Math Comput Simul 61(3):561–572. https://doi.org/10.1016/S0378-4754(02)00107-6
  • 21. Kalaneh S, Agh-Atabai M (2016) Spatial variation of earthquake hazard parameters in the Zagros fold and thrust belt, SW Iran. Nat Hazards 82(2):933–946. https://doi.org/10.1007/s11069-016-2227-y
  • 22. Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—A 1-degree global model of Earth’s crust. In: Abstract EGU2013-2658 Presented at 2013 Geophys. Res. Abstracts, vol 15, no 15, p 2658
  • 23. Lewerissa R, Sismanto S, Setiawan A, Pramumijoyo S (2020) The igneous rock intrusion beneath Ambon and Seram islands, eastern Indonesia, based on the integration of gravity and magnetic inversion: its implications for geothermal energy resources. Turkish J Earth Sci 29(4):596–616. https://doi.org/10.3906/yer-1908-17
  • 24. Lewerissa R, Rumakey R, Syakur YA, Lapono L (2021) Completeness magnitude (Mc) and b-value characteristics as important parameters for future seismic hazard assessment in the West Papua province Indonesia. Arab J Geosci 14(23):2588. https://doi.org/10.1007/s12517-021-08885-4
  • 25. Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61(2):394–408. https://doi.org/10.1190/1.1443968
  • 26. Li Y, Oldenburg DW (1998) 3-D inversion of gravity data. Geophysics 63(1):109–119. https://doi.org/10.1190/1.1444302
  • 27. Makrup L, Hariyanto A, Winarno S (2018) Seismic Hazard Map for Papua Island. Int Rev Civ Eng (IRECE) 9:57. https://doi.org/10.15866/irece.v9i2.14090
  • 28. Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead JD, Finn C, von Frese RRB, Gaina C, Golynsky S, Kucks R, Lühr H, Milligan P, Mogren S, Müller RD, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Caratori Tontini F (2009) EMAG2: a 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochem Geophys Geosyst 10(8). https://doi.org/10.1029/2009GC002471
  • 29. Meyer B, Chulliat A, Saltus R (2017) Derivation and Error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3). Geochem Geophys Geosyst 18(12):4522–4537. https://doi.org/10.1002/2017GC007280
  • 30. Milsom J (1991) Gravity measurements and terrane tectonics in the New Guinea region. J Southeast Asian Earth Sci 6(3–4):319–328. https://doi.org/10.1016/0743-9547(91)90077-B
  • 31. Milsom J, Masson D, Nichols G, Sikumbang N, Dwiyanto B, Parson L, Kallagher H (1992) The Manokwari Trough and the western end of the New Guinea Trench. Tectonics 11(1):145–153. https://doi.org/10.1029/91TC01257
  • 32. Oldenburg DW, Li Y (1994) Subspace linear inverse method. Inverse Prob 10(4):915–935. https://doi.org/10.1088/0266-5611/10/4/011
  • 33. Oldenburg D, Li Y (2005) 5. Inversion for applied geophysics: a tutorial. Near Surf Geophys. https://doi.org/10.1190/1.9781560801719.ch5
  • 34. Putra A, Husein S (2019) Regional overview of orogenic belts in Indonesia: emphasis on the occurrences of thrust wedge systems. Berita Sedimentologi 44:19–41
  • 35. Reynolds JM (1997) An introduction to applied and environmental geophysics. John Wiley, London
  • 36. Saibi H, Hag DB, Alamri MSM, Ali HA (2021) Subsurface structure investigation of the United Arab Emirates using gravity data. Open Geosci 13(1):262–271. https://doi.org/10.1515/geo-2020-0233
  • 37. Serhalawan YR, Sianipar DSJ (2017) Pemodelan Mekanisme Sumber Gempa Bumi Ransiki 2012 Berkekuatan MW 6, 7. JST (jurnal Sains Dan Teknologi) 6(1):10
  • 38. Shandini Y, Kouske PA, Nguiya S, Marcelin MP (2018) Structural setting of the Koum sedimentary basin (north Cameroon) derived from EGM2008 gravity field interpretation. Contrib Geophys Geodesy 48(4):281–298. https://doi.org/10.2478/congeo-2018-0013
  • 39. Soulaimani S, Chakiri S, Manar A, Soulaimani A, Miftah A, Bouiflane M (2020) Potential-field geophysical data inversion for 3D modelling and reserve estimation (Example of the Hajjar mine, Guemassa massif, Morocco): magnetic and gravity data case. Comptes Rendus Géoscience 352(2):139–155. https://doi.org/10.5802/crgeos.10
  • 40. Tian T, Zhang J, Jiang W, Tian Y (2020) Quantitative study of crustal structure spatial variation based on gravity anomalies in the Eastern Tibetan Plateau: Implication for earthquake susceptibility assessment. Earth Space Sci 7(3):e2019EA000943. https://doi.org/10.1029/2019EA000943
  • 41. Watkinson IM, Hall R (2017) Fault systems of the eastern Indonesian triple junction: evaluation of quaternary activity and implications for seismic hazards. Geol Soc Lond Special Publ 441(1):71–120. https://doi.org/10.1144/SP441.8
  • 42. Webb M, White L (2016) Age and nature of Triassic magmatism in the Netoni Intrusive Complex, West Papua, Indonesia. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2016.09.019
  • 43. Zeng H, Xu D, Tan H (2007) A model study for estimating optimum upward-continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China. Geophysics 72(4):I45–I50. https://doi.org/10.1190/1.2719497
  • 44. Zingerle P, Pail R, Gruber T, Oikonomidou X (2020) The combined global gravity field model XGM2019e. J Geodesy. https://doi.org/10.1007/s00190-020-01398-0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af47a4aa-2060-4e32-845e-158d1ad316dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.