PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The effect of long-term contamination by heavy metals on community and genome alterations of Chironomidae (Diptera) in a stream with mine drainage water (southern Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports on studies of the effect of heavy metals on the Chironomidae that inhabit the Matylda stream, which has been contaminated for about 100 years by discharge water from a zinc and lead ore mine. Stream sediment was strongly polluted by Cd, Pb, Cu and Zn. These metals did not affect the Chironomidae community but strongly changed the genome system of the Chironomidae species that inhabited the sediment. The salivary gland chromosomes of six species belonging to the two genera Chironomus and Prodiamesa are analyzed. In all species the somatic index is calculated on the basis of somatic chromosome alterations. Chironomus riparius has the highest numbers of somatic alterations and the highest somatic index — 9.67. The smallest chromosome G carries the key structures known as “Balbiani rings”, which play an important role in species development. This chromosome is very sensitive in the genome of the most studied species. The high sensitivity of the C. riparius genome is discussed in light of its DNA organization. The results show a high response of the salivary gland chromosomes to heavy metal pollution, and this makes them a valuable indicator in the assessment of water quality and detection of mutagenic agents in the aquatic environment.
Słowa kluczowe
Rocznik
Strony
460--469
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza Ave. 33, 31-120, Kraków, Poland
  • Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tzar Osvoboditel boulv., Sofia, Bulgaria
autor
  • Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tzar Osvoboditel boulv., Sofia, Bulgaria
autor
  • Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza Ave. 33, 31-120, Kraków, Poland
autor
  • Department of Geology, Geophysics and Environmental Protection AGH, Mickiewicza Ave. 30, 30-059, Kraków, Poland
  • Department of Geology, Geophysics and Environmental Protection AGH, Mickiewicza Ave. 30, 30-059, Kraków, Poland
Bibliografia
  • 1. Aleksander-Kwaterczak, U. Ciszewski D. (2012). Groundwater hydrochemistry and soil pollution in a catchment affected by an abandoned lead-zinc mine: functioning of a diffuse pollution source, Environ. Earth Sci., 65(4), SI, 1179–1189.
  • 2. Armitage, P.D. Michael, A. Bowes, J. Vincent H.M. (2007). Long-term changes in macroinvertebrate communities of a heavy metal polluted stream: the River Nent (Cumbria, UK) after 28 years. River. Res. Applic., 23, 997–1015.
  • 3. Baumann, Z. & Fisher N.S. (2011). Relating the sediment phase speciation of arsenic, cadmium, and chromium with their bioavailability for the deposit-feeding polychaete Nereis succinea. Environ. Toxicol. Chem., 30(3), 747–756.
  • 4. Bervoets, L. Blust, R. de Wit M. Verheyen, R. (1997). Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environ. Pollut., 95(3), 345–356.
  • 5. Bovero, S. Hankeln T. Michailova P. Schmidt E. & Sella G. (2002). Nonrandom chromosomal distribution of spontaneous breakpoints and satellite DNA clusters in two geographically distant populations of Chironomus riparius (Diptera, Chironomidae). Genetica, 115, 273–281.
  • 6. Byrne, P. Reid I. & Wood P.J. (2010). Sediment geochemistry of streams draining abandoned lead/zinc mines in Central Wales: the Afon Twymyn. J. Soils Sediment, 10, 683–697.
  • 7. Calmano, W. von der Kammer F. & Schwartz R. (2005). Characterization of redox conditions in soils and sediments: Heavy metals. In: Soil and Sediment Remediation [Lens, P. Grotenhuis T. Malina G. Tabak H. (eds)], IWA Publ., London UK, pp 102–120.
  • 8. Canfield, T.J. Kemble N.E. Brumbaugh W.G. Dwyer F.J. Ingersoll C.G. & Fairchild J.F. (2009). Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the Upper Clark Fork River, Montana. Environ. Toxicol. Chem., 13(12), 1999–2012.
  • 9. Ciszewski, D. Aleksander-Kwaterczak U. Kubsik U. Kwandrans J. Pociecha A. Szarek-Gwiazda E. Tłoczek I. Waloszek A. & Wilk-Woźniak E. (2011). Interdisciplinary investigations of contamination effects of pond and stream waters and sediments in the Matylda catchment — an attempt to classification. In: Interdisciplinary Researches in Natural Sciences [Zieliński A. (ed.)], Institute of Geography, Jan Kochanowski Uniwersity, Kielce, pp. 29–46.
  • 10. Clements, W.H. Cherry, D.S., Van Hassel J.H. (1992). Assessment of the impact of heavy metals on benthic communities at the Clinch River (Virginia): Evaluation of an index of community sensitivity. Canadian Journal of Fisheries and Aquatic Sciences, 49(8), 1686–1694.
  • 11. Fittkau, J. E. (1962). Die Tanypodinen (Diptera: Chironomidae). die Tribus Anatopyniini, Macropelopiini und Pentaneurini. Abhandlungen zur Larvalsystematik der Insecten, 6, 1–453.
  • 12. Fittkau, E.J. Roback S.S. (1983). 5. The larvae of Tanypodine (Diptera: Chironomidae) of the Holarctic region — Keys and diagnoses. Ent. scand. Suppl. 19, 33–110.
  • 13. Florea, A.M. & Büsselberg D. (2006). Metals and metal compounds: occurrence, use, benefits and toxic cellular effects. Biometals, 19, 419–427.
  • 14. Förstner, U. & Salomons W. (1980). Trace metal analysis in polluted sediments. Environ. Technol. Lett., 1, 494.
  • 15. Gower, A.M., Myers G. Kent M. & Foulkes M.E. (2006). Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-west England. Freshwat. Biol., 32(1), 199–221.
  • 16. Hankeln, T. Rohwedder A. Weich B. & Schmidt E.R. (1994). Transposition of minisatellite-like DNA in Chironomus midges. Genome, 37(4), 542–549.
  • 17. Ilkova, J. Hankeln T. Schmidt E. Michailova P. Petrova N. Sella G. & White K. (2007). Genome instability of Chironomus riparius Mg. and Chironomus piger Strenzke (Diptera, Chironomidae). Caryologia, 60(4), 299–308.
  • 18. Ilkova, J., Cervella P., Zampicinini GP., Sella, G. & Michailova, P. (2013). Chromosomal breakpoints and transposable-element-insertion sites in salivary gland chromosomes of Chironomus riparius Meigen (Diptera, Chironomidae) from trace metal polluted stations. Acta Zool. Bulg. 65(1), 59–73.
  • 19. Keyl, H. (1962). Chromosomenevolution bei Chironomus. II. Chromosomenumbauten und phylogenische Beziehungen derArten. Chromosoma, 13, 496–541.
  • 20. Keyl, H. (1965). A demonstrable local and geometric increase in the chromosomal DNA of Chironomus. Experientia, 21, 191–193.
  • 21. Kiknadze, I.I. Shilova A. Kekris I. Shobanov N. Zelenzov N. Grebenjuk A. Istomina A. & Praslov B. (1991). Karyotype and morphology of larvae in Chironomini. Atlas. Novosibirsk, pp. 1–117.
  • 22. King, M. (1993). Species evolution: the role of chromosome change. Cambridge University Press, Cambridge, UK, 336pp.
  • 23. Kownacki A. (2011). Significance and Conservation of Chironomidae (Diptera, Insecta) in aquatic ecosystems of Poland. Forum Faun., 1(1), 4–11. (in Polish with English summary)
  • 24. Lagadic, L. & Caquet T. (1998). Invertebrates in testing of environmental chemicals: Are they alternatives? Environ. Health Perspect., 106,suppl.2, 593–613.
  • 25. Lagrana, C. Apodaca D. & David C.P. (2011). Chironomids as biological indicators of metal contamination in aquatic environment. Int. J. Environ. Sci. Dev., 2(4), 306–310.
  • 26. Larner, B.L. Seen A.J. & Townsend A.T. (2006). Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the Certified Reference Material NIST 2711. Anal. Chim. Acta, 556, 444–449.
  • 27. Martinez, E.A., Moore B.C. Schaumloffel J. & Dasgupta N. (2004). Effects of exposure to a combination of zinc- and lead spiked sediments on mouthpart development and growth in Chironomus tentans. Environ. Toxicol. Chem., 23, 662–667.
  • 28. Martinez, E.A. Moore B.C. Schaumloffel J. & Dasgupta N. (2009). Induction of morphological deformities in Chironomus tentans exposed to zinc- and lead-spiked sediments. Environ. Toxicol. Chem., 20(11), 2475–2481.
  • 29. Michailova, P. (1989). The polytene chromosomes and their significance to the systematics of the family Chironomidae, Diptera. Acta Zool. Fenn., 186, 1–107.
  • 30. Michailova, P. Ilkova J. Hankeln T. Schmidt E. Selvaggi A. Zampicinini G. & Sella G. (2009). Somatic breakpoints, distribution of repetitive DNA and non-LTR retrotransposon insertion sites in the chromosomes of Chironomus piger Strenzke (Diptera, Chironomidae). Genetica, 135, 137–148.
  • 31. Michailova, P., Szarek-Gwiazda E. Kownacki A. & Warchałowska-Śliwa E. (2012a). Genomic alterations recorded in two species of Chironomidae (Diptera) in the Upper Jurassic limestone area of the Ojców National Park in Poland attributable to natural and anthropogenic factors. Eur. J. Entomol., 109, 479–490.
  • 32. Michailova, P., Sella G. & Petrova N. (2012b). Chironomids (Diptera) and their salivary gland chromosomes as indicators of trace metal genotoxicology. Ital. J. Zool., 79(2), 218–230.
  • 33. Midya, T. Bhaduri S. & Sarkar P. (2012). Failure in somatic pairing of 4th chromosome in Chironomus striatipennis Kieffer (Diptera: Chironomidae). The Bioscan, 7(2), 321–324.
  • 34. Persaud, D. Jaagumagi R. & Hayton A. (1993). Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of the Environment, Queen’s Printer of Ontario, 27 pp.
  • 35. Sarkar, P. Bhaduri S. Ghosh C. & Midya T. (2011). A study on the polymorphic fourth chromosome of Chironomus striatipennis (Kieffer). The Bioscan, 6(3), 383–387.
  • 36. Sella, G. Bovero S. Ginepro M. Michailova P. Petrova N. Robotti C.A. & Zelano V. (2004). Inherited and somatic cytogenetic variability in palaearctic populations of Chironomus riparius Meigen (Diptera, Chironomidae). Genome, 47, 332–244.
  • 37. Sokal, R. & Rohlf F. (1995). Biometry. Third edition, W. Freeman, New York.
  • 38. Waalkes, M. & Misra R. (1996). Cadmium carcinogenicity and genotoxicity. In: Toxicology of Metals [Chang, L.W. (ed.)], CRC Press, Boca Raton, pp. 231–241.
  • 39. Warwick, W.F. (1988). Morphological deformities in Chironomidae (Diptera) larvae as biological indicators of toxic stress. In: Toxic Contaminants and Ecosystem Health. A Great Lakes Focus [Evan, M.S. (ed.)], John Wiley and Sons, New York.
  • 40. Wiederholm, T. (ed.) (1983). Chironomidae for Holarctic Region. Keys and Diagnoses. Part 1 — Larvae. Ent. Scand. Suppl., 19, 1–435.
  • 41. Wieslander, L. (1994). The Balbiani ring multigene family: coding sequences and evolution of a tissue-specific function. Proc. Nucleic Acids Res., 48, 275–313.
  • 42. Winner, R. W. Boesel, M.W., Farrell M. P. (1980). Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 37(4), 647–655.
  • 43. Yousef, H. Afify A. Hasan H. & Meguid A. (2010). DNA damage in hemocytes of Schistocera gregaria (Orthoptera: Acrididae) exposed to contaminated food with cadmium and lead, Nat. Sci., 2(4), 292–297.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af43955e-75fe-4ed2-8a8d-beaaefbf4d94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.