Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this present work is to study the higher-order modelling of a cylindrical nano-shell resting on Pasternak’s foundation based on nonlocal elasticity theory. Third-order shear deformation theory is developed for modelling the kinematic relations, and nonlocal elasticity theory is developed for size-dependent analysis. The principle of virtual work is applied to derive static governing equations. The solution is presented for simply supported boundary conditions in terms of various important parameters. The numerical results including lower- and higher-order longitudinal and radial displacements are presented in terms of nonlocal parameter, two parameters of Pasternak’s foundation and some dimensionless geometric parameters such as length-to-radius ratio and length-to-thickness ratio.
Czasopismo
Rocznik
Tom
Strony
310--326
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan 87317-51167, Iran
autor
- Research Center for Interneural Computing, China Medical University, Taichung, Taiwan
Bibliografia
- [1] Yang J, Shen H-S. Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. J Sound Vib. 2003;261:871–93.
- [2] Chen WQ, Bian ZG, Lv CF, Ding HJ. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. Int J Solids Struct. 2004;41:947–64.
- [3] Lam KY, Qian WU. Vibrations of thick rotating laminated composite cylindrical shells. J Sound Vib. 1999;225(3):483–501.
- [4] Asgari M, Akhlaghi M. Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equa-tions. Eur J Mech A Solid. 2011;30:72–81.
- [5] Shakeri M, Akhlaghi M, Hoseini SM. Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder. Compos Struct. 2006;76:174–81.
- [6] Mohammadi K, Mahinzare M, Ghorbani Kh, Ghadiri M. Cylindrical functionally graded shell model based on the first order shear deformation nonlocal strain gradient elasticity theory. Microsyst Technol. 2018;24:1133–46.
- [7] Dastjerdi S, Abbasi M, Yazdanparast L. A new modified higher-order shear deformation theory for nonlinear analysis of macro- and nano-annular sector plates using the extended Kantorovich method in conjunction with SAPM. Acta Mech. 2017;228(10):3381–401.
- [8] Razavi S. Magneto-electro-thermo-mechanical response of a multiferroic doubly-curved nano-shell. J Solid Mech. 2018;10(1):130–41.
- [9] Shooshtari A, Razavi S. Vibration analysis of a magnetoelectro-elastic rectangular plate based on a higher-order shear deformation theory. Lat Am J Solids Struct. 2016;13(3):554–72.
- [10] Raissi H, Shishesaz M, Moradi S. Applications of higher order shear deformation theories on stress distribution in a five layer sandwich plate. J Appl Comput Mech. 2017;48(2):233–52.
- [11] Ansari R, Hasrati E, Torabi J. Vibration analysis of pressurized sandwich FG-CNTRC cylindrical shells based on the higher-order shear deformation theory. Res Express. 2019;6:045049.
- [12] Mehraliana F, Beni YT. A nonlocal strain gradient shell model for free vibration analysis of functionally graded shear deformable nanotubes. Int J Eng Appl Sci. 2017;9(2):88–102.
- [13] Beni YT, Mehralian F, Zeverdejani MK. Free vibration of ani-sotropic single-walled carbon nanotube based on couple stress theory for different chirality. J Low Freq Noise Vib Active Control. 2017;36(3):277–93.
- [14] Zhang Y, Zhang F. Vibration and buckling of shear deformable functionally graded nanoporous metal foam nanoshells. Nanomaterials. 2019;9:271.
- [15] Rouhi H, Ansari R, Darvizeh M. Exact solution for the vibrations of cylindrical nanoshells considering surface energy effect. J Ultrafine Grained Nanostruct Mater. 2015;48(2):113–24.
- [16] Soleimani YT, Beni MB. Dehkordi, Finite element vibration analysis of nanoshell based on new cylindrical shell element. Struct Eng Mech. 2018;65(1):33–41.
- [17] Ghadiri M, Safarpour H. Free vibration analysis of a functionally graded cylindrical nanoshell surrounded by elastic foundation based on the modified couple stress theory. Amirkabir J Mech Eng. 2018;49(4):721–30.
- [18] Hajilak ZE, Pourghader J, Hashemabadi D, Bagh FS, Habibi M. Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Des Struct. 2019. https ://doi.org/10.1080/15397 734.2019.15667 43.
- [19] Razavi H, Babadi AF, Beni YT. Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos Struct. 2017;160:1299–309.
- [20] Chakraborty S, Dey T, Kumar R. Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos B Eng. 2019;168:1–14.
- [21] Mehralian F, Beni YT. Size-dependent torsional buckling analysis of functionally graded cylindrical shell. Compos B Eng. 2016;94:11–25.
- [22] Habibi M, Taghdir A, Safarpour H. Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos B Eng. 2019;175:107125.
- [23] Jabbari M, Sohrabpour S, Eslami MR. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int J Press Vessels Pip. 2002;79(7):493–7.
- [24] Jabbari M, Bahtui A, Eslami MR. Axisymmetric mechanical and thermal stresses in thick short length FGM cylinders. Int J Press Vessels Pip. 2009;86(5):296–306.
- [25] Jabbari M, Sohrabpour S, Eslami MR. General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. J Appl Mech. 2003;70(1):111–8.
- [26] Arefi M, Zenkour AM. Size-dependent thermoelastic analysis of a functionally graded nanoshell. Mod Phys Lett B. 2018;32(03):1850033.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af433a4a-766b-402e-85ee-08869dbf7c97