PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analytical quality by design approach for the control of potentially counterfeit chloroquine with some NSAIDS using HPLC with fluorescence detection in pharmaceutical preparation and breast milk

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chloroquine phosphate (CQ) the antimalarial drug and suggested to treat the pandemic disease coronavirus (COVID-19) is often adulterated with some of the non-steroidal anti-inflammatory drugs (NSAIDs) such as paracetamol, aspirin (ASP), or both. The purpose of this study is to detect such counterfeited drugs, using a reversed phase high pressure liquid chromatography (RP-HPLC) method with fluorescence detection. Analysis was divided into three phases. In the first phase, a Plackett-Burman design (PBD) was used to screen five independent factors, namely, buffer pH, buffer concentration (mM), acetonitrile content (%), flow rate (mL/min) and triethylamine (TEA) content in the buffer preparation (%). The selected dependent variables were (resolution, symmetry of peaks and run time). The objective of the second phase was to optimize the method performance using Box-Behnken design (BBD) and desirability function for multiple response optimization to obtain the best chromatographic performance with the shortest run time. Optimal chromatographic separation was achieved on a YMC-pack pro C18 ODS-A column (15 cm × 4.6 mm, 5 µm) at room temperature The optimum mobile phase consisted of acetonitrile and 5 mM sodium dihydrogen phosphate buffer containing 0.5% triethyamine (30:70, v/v) with the pH adjusted to 3.5 using an orthophosphoric acid solution. The flow rate was maintained at 1 mL/min, and the detection was performed with a fluorescence detector fixed at 380 nm(λemission) after excitation at 335 nm(λexcitation). The third phase was method validation according to ICH guidelines, providing to be specific, precise, accurate, and robust. The method is linear over a range of 0.4–8 µg/mL for chloroquine and ASP, while for paracetamol it is linear over 16–48 µg/mL. The developed RP-HPLC method was used for quantitation of the three drugs in chloroquine dosage form samples. The method shows a great tendency in the classification between the genuine chloroquine and the adulterated ones in pharmaceutical preparations and breast milk.
Rocznik
Strony
234--244
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
autor
  • Analytical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
  • Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
  • Analytical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
Bibliografia
  • 1. British Pharmacopoeia Commission 2010; Published by the Stationary Office: London, 2018.
  • 2. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Xiao, G. Cell Res. 2020, 30, 269. http://doi.org/10.1038/s41422-020-0282-0.
  • 3. Lai, C. C.; Shih, T. P.; Ko, W. C.; Tang, H. J.; Hsueh, P. R. Inter. J. Antimicrob. Agents 2020, 55, 105924. http://doi.org/10.1016/j.ijantimicag.2020.105924.
  • 4. Gautret, P.; Lagier, J. C.; Parola, P.; Hoang, V. T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Viera, V. E.; Dupont, H. T.; Honoré, S.; Colson, P.; Chabrière, E.; Scola, B. L.; Rolain, J. M.; Brouqui, P.; Raoult, D. Inter. J. Antimicrob. Agents 2020, 105949. http://doi.org/10.1016/j.ijantimicag.2020.105949.
  • 5. WHO. Counterfeit Medicines. http://www.who.int/mediacentre/factsheets/fs275/en/2006. (accessed June 15, 2018).
  • 6. Kuhn, T.; Wang, Y., in: Petersen, F.; Amstutz, R. (Eds.), In Natural Compounds as Drugs, Birkh€auser, Basel: Switzerland, 2007; p. 383. https://doi.org/10.1007/978-3-7643-8595-8_9.
  • 7. Newton, P. N.; Hampton, C. Y.; Alter-Hall, K.; Teerwarakulpana, T.; Prakongpan, S.; Ruangveerayuth, R.; Fernández, F. M. Am. J. Trop. Med. Hyg. 2008, 79, 662. https://doi.org/10.4269/ajtmh.2008.79.662.
  • 8. Akunyili, D. N.; Nnani, I. P. C. Inter. J. of Risk Safety Med. 2004, 16, 181.
  • 9. English, M.; Marsh, V.; Amukoye, E.; Lowe, B.; Murphy, S.; Marsh, K. Lancet 1996, 347, 1736. https://doi.org/10.1016/S0140-6736(96) 90809-0.
  • 10. Gazzard, B. G.; Ford-Hutchinson, A. W.; Smith, M. J. H.; Williams, R. J. Pharm. Pharmacol. 1973, 25, 964. https://doi.org/10.1111/j.2042-7158.1973.tb09987.x.
  • 11. Augustijns, P.; Verbeke, N. Clin. Pharmacokinet. 1993, 24, 259. https://doi.org/10.2165/00003088-199324030-00007.
  • 12. Ghahramani, P.; Rowland-Yeo, K.; Yeo, W. W.; Jackson, P. R.; Ramsay, L. E. Clin. Pharmacol. Ther. 1998, 63, 285. https://doi.org/10.1016/S0009-9236(98)90160-6.
  • 13. Green, M. D.; Nettey, H.; Rojas, O. V.; Pamanivong, C.; Khounsaknalath, L.; Ortiz, M. G.; Manolin, O. J. Pharm. Biomed. Anal. 2007, 43,105. https://doi.org/10.1016/j.jpba.2006.06.047.
  • 14. Gaudiano, M. C.; Antoniella, E.; Bertocchi, P.; Valvo, L. J. Pharm. Biomed. Anal. 2006, 42, 132. https://doi.org/10.1016/j.jpba.2006.01.059.
  • 15. Atemnkeng, M. A.; Chimanuka, B.; Plaizier-Vercammen, J. J. clin. pharm. Ther. 2007, 32, 123. https://doi.org/10.1111/j.1365-2710.2007.00797.x.
  • 16. Miranda, T. A.; Silva, P. H.; Pianetti, G. A.; César, I. C. Malar. J. 2015, 14, 29.‏ https://doi.org/10.1186/s12936-015-0570-1.
  • 17. Irby, A. Detecting Counterfeit Anti-malarials through Comparison between High-pressure Liquid Chromatography and Other Methods of Analysis, 2011, https://digitalcommons.longwood.edu/etd/23. (accessed March 6, 2018).
  • 18. Kamolratanakul, P.; Dhanamun, B.; Thaithong, S. Southeast Asian J. Trop. Med. Public Health 1992, 23, 189.
  • 19. Lingeman, H.; Underberg, W. J. M.; Takadate, A.; Hulshoff, A. J. Liq. Chromatogr. 1985, 8, 789. (https://doi.org/10.1080/01483918508067120).
  • 20. Anderson, M. J.; Patrick, J. W. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments; CRC Press: New York, 2016.
  • 21. Monks, K. E.; Rieger, H. J.; Molnár, I. J. Pharm. Biomed. Anal. 2011, 56, 874. https://doi.org/10.1016/j.jpba.2011.04.015.
  • 22. Gad, M. A.; Amer, S. M.; Zaazaa, H. E.; Hassan, S. A. J. Pharm. Biomed. Anal. 2020, 178, 112910. https://doi.org/10.1016/j.jpba.2019.112910.
  • 23. Anderson, M. J.; Whitcomb, P. J. Annual Quality Congress Proceedings-American Society for Quality Control; Stat-Ease: Minneapolis, 2004; p. 471.
  • 24. Derringer, G.; Suich, R. J Qual. Technol. 1980, 12, 214. https://doi.org/10.1080/00224065.1980.11980968.
  • 25. Candioti, L. V.; De Zan, M. M.; Cámara, M. S.; Goicoechea, H. C. Talanta, 2014, 124, 123. https://doi.org/10.1016/j.talanta.2014.01.034.
  • 26. Group, I. E. W. Validation of analytical procedures: text and methodology Q2 (R1). Paper presented at: Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, 2005.
  • 27. States, U. USP 37 NF 32; United States Pharmacopeial, 2014.
  • 28. Dressman, J. B.; Nair, A.; Abrahamsson, B.; Barends, D. M.; Groot, D. W.; Kopp, S.; Zimmer, M. J. Pharm. Sci. 2012, 101, 2653. https://doi.org/10.1002/jps.23212.
  • 29. Buszewski, B.; Noga, S. Anal. Bioanal. Chem. 2012, 402, 231. https://doi.org/10.1007/s00216-011-5308-5.
  • 30. Kiel, J. S.; Morgan, S. L.; Abramson, R. K. J. Chromatogr. A. 1985, 320, 313. https://doi.org/10.1016/S0021-9673(01)90509-6.
  • 31. Deming, S. N.; Morgan, S. L. Experimental Design: A Chemometric Approach; Elsevier: Amsterdam, 1993.
  • 32. Montgomery, D. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, 2009.
  • 33. Ferreira, S. C.; Bruns, R. E.; Ferreira, H. S.; Matos, G. D.; David, J. M.; Brandao, G. C.; Dos Santos, W. N. L. Anal. Chim. Acta. 2007, 597, 179. https://doi.org/10.1016/j.aca.2007.07.011.
  • 34. Bosque-Sendra, J. M.; Pescarolo, S.; Cuadros-Rodríguez, L.; García-Campaña, A. M.; Almansa-López, E. M. Fresenius J. Anal. Chem. 2001, 369, 715. https://doi.org/10.1007/s002160100751.
  • 35. Jermal, M.; Xia, Y. Rapid Commun. Mass Spectrom. 1999, 13, 97.https://doi.org/10.1002/(SICI)1097-0231(19990130)13:2<97::AIDRCM461> 3.0.CO;2-T.
  • 36. Dolan, J. W.; Lommen, D. C.; Snyder, L. R. J. Chromatogr. A. 1989, 485, 91. https://doi.org/10.1016/S0021-9673(01)89134-2.
  • 37. Seltman, H. J. Experimental Design and Analysis, 2012. http://www.stat.cmu.edu/, hseltman/309/Book/Book.pdf. (accessed May 14, 2018).
  • 38. Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nystrom, A.; Pettersen, J.; Bergman, R. Intell. Lab. Sys. 1998, 42, 3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af40ad03-da06-468c-b53c-17775922dfd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.