Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Supports are one of the most popular structural elements in engineering. They have a wide range of applications, including in pressure gauge connectors, fixtures for photovoltaic and solar panels, and traffic signs. Supports are also used in highly complex engineering projects such as airplane wings or rotor blades. Monitoring methods for detecting and predicting the condition of support structures have become an important area of research. Structural damage to machines and machine parts can be prevented through early detection of fatigue cracks with the use of non-destructive methods. The paper proposes a method for detecting fatigue cracks along the cross-sectional area of a specimen based on selected parameters of the vibration signal. The diagnostic signal for analyses of specimen cross-sectional area was vibration acceleration, which was described with the use of the following parameters: changes in amplitude and waveform (FFT), RMS amplitude, changes in the amplitude of a vibrating sample, and changes in the phase angle of a vibrating sample. In the test stand, cross-sectional damage was caused by forces of inertia acting on the specimen. The results of the study indicate that all of the analysed parameters can be used to detect the loss of structural continuity (mechanical and fatigue cracks) in an object. An analysis of changes in the amplitude of a vibrating sample was the fastest and most comprehensive source of information.
Wydawca
Czasopismo
Rocznik
Tom
Strony
279--287
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn Department of Vehicle and Machine Design and Operation Faculty of Technical Sciences Oczapowskiego Street 11, 10-719 Olsztyn tel.: +48 89 523 37 51, fax: +48 89 523 34 63
Bibliografia
- [1] Liu, B., Gang, T., Wan, C., Wang, C., Luo, Z., Nondestructive Testing and Evaluation, Vol. 30, Is. 3, pp. 277-290, 2015.
- [2] Białkowski, P., Krężel, B., Early detection of cracks in rear suspension beam with the use of time domain estimates of vibration during the fatigue testing, Diagnostyka, Vol. 16, No. 4, pp. 55-62, 2015.
- [3] Broda, D., Staszewski, W. J., Martowicz, A., Uhl, T., Silberschmidt, V. V., Modelling of nonlinear crack-wave interactions for damage detection based on ultrasound – a review, Journal of Sound and Vibration, Vol. 333, pp. 1097-1118, 2014.
- [4] Broda, D., Klepka, A., Staszewski, W. J., Scarpa, F., Nonlinear Acoustics in Non-destructive Testing – from Theory to Experimental Application, Key Engineering Materials, Vol. 588, pp. 192-201, 2014.
- [5] Byung, Kwan Oh, Se Woon Choi, Hyo Seon Park1, Damage Detection Technique for Cold-Formed Steel Beam Structure Based on NSGA-II. Shock and Vibration, Vol. 2015, Article ID 354564, 2015.
- [6] Jassim, Z. A., Ali, N. N., Mustapha, F., Abdul Jalil, N. A., A review on the vibration analysis for a damage occurrence of a cantilever beam, Engineering Failure Analysis, 31, pp. 442-461, 2013.
- [7] Kaźmierczak, H., Pawłowski, T., Wojniłowicz, Ł., Quantifiable measures of the structural degradation of construction materials, Diagnostyka, Vol. 14, No. 4, pp. 77-83, 2013.
- [8] Klepka, A., Pieczonka, L., Staszewski, W.J., Aymerich, F., Impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations, Composites: Part B 65, pp. 99-108, 2014.
- [9] McGhee, J., Definition of a Cutoff Natural Frequency for Smallbore Pipework Connections, Oil and Gas Facilities, pp. 16-22, 2014.
- [10] Mendrok, K., Multiple damage localization using local modal filters, DIAGNOSTYKA, Vol. 15, No. 3, pp. 15-21, 2014.
- [11] Panteliou, S. D., Chandros, T. G., Argyrakis, V. C., Dimaragonas, A. D., Damping factor as an indicator of crack severity, Journal of Sound and Vibration, 241, pp. 235-245, 2001.
- [12] Qingsong, Xu, Impact detection and location for a plate structure using least squares support vector machines, Structural Health Monitoring, Vol. 13(1), pp. 5-18, 2014.
- [13] Radkowski, S, Szczurowski, K., Use of vibroacoustic signals for diagnosis of prestressed structures, Eksploatacja i Niezawodność, Maintenance and Reliability, 14-1, pp. 84-91, 2012.
- [14] Sinha, J. K., Friswell, M. I., Edwards, S., Simplified models for the location of cracks in beam structures using measured vibration data, Journal of Sound and Vibration, 251(1), pp. 13-38 2002.
- [15] Sudintas, A., Paškevičius, P., Spruogis, B., Maskeliūnas, R., Measurement of stability of a pipe system with flowing fluid, Journal of Measurements in Engineering, Vol. 3, Is. 3, pp. 87-91, 2015.
- [16] Tao Jinniu, Feng Yongming, Tang Kezhong, Fatigue crack detection for a structural hotspot, Journal of Measurements in Engineering, Vol. 2, Is. 1, pp. 49-56, 2014.
- [17] Trochidis, A., Hadjileontiadis, L., Zacharias, K., Analysis of vibroacoustic modulations for crack detection: A Time-Frequency Approach Based on Zhao-Atlas-Marks Distribution, Hindawi Publishing Corporation, Shock and Vibration, Article ID 102157, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af3f5714-fcb8-472a-ba37-7c46fa8e6ff8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.