PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wind tunnel tests of hovering propellers in the transition state of Quad-Plane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following paper presents wind tunnel investigation of aerodynamic characteristics of hovering propellers. This propulsion system may be applied on a lightweight Quad Plane VTOL (Vertical Take-Off and Landing) UAV (Unmanned Aerial Vehicle). A Quad Plane is a configuration consisting of a quadcopter design combined with a conventional twin-boom airplane. This kind of design should therefore incorporate the advantages of both types of vehicles in terms of agility and long endurance. However, those benefits may come with a cost of worse performance and higher energy consumption. The characteristics of a fixed-wing aircraft and propellers in axial inflow are well documented, less attention is put to non-axial flow cases. VTOL propellers of a hybrid UAV are subject to a multitude of conditions – various inflow speeds and angles, changing RPMs, interference between propellers and between nearby aerodynamic structures. The tested system presented in this article consists of four electric motors with two coaxial pairs of propellers mounted on one of the fuselage beams. Such a configuration is often chosen by designers of small and medium hybrid UAVs. There is a need for studies of clean, efficient ways of transporting, and this article can aid future designers of a new type of electric UAVs.
Rocznik
Strony
art. no. e138821
Opis fizyczny
Bibliogr. 31 poz., il., wykr., fot., tab.
Twórcy
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland
Bibliografia
  • [1] A. M. Kamal and A. Ramirez-Serrano, “A. Design methodology for hybrid (VTOL + Fixed Wing) unmanned aerial vehicles,” Aeronaut. Aerosp Open Access J., vol. 2, no. 3, pp. 165-176, 2018, doi: 10.15406/aaoaj.2018.02.00047.
  • [2] A.S. Saeed, A.B. Younes, C. Cai, and G. Cai, „A survey of hybrid unmanned aerial vehicles,” Prog. Aerosp. Aci., vol. 98, pp. 91-105, 2018, doi: 10.1016/j.paerosci.2018.03.007.
  • [3] A. Bacchini and E. Cestino, „Electric vtol configurations comparison,” Aerospace, vol. 6, no. 3, doi: 10.3390/aerospace6030026.
  • [4] T. Goetzendorf-Grabowski, A. Tarnowski, M. Figat, J. Mieloszyk, and B. Hernik, „Lightweight unmanned aerial vehicle for emergency medical service-Synthesis of the layout,” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., vol. 235, pp. 5-21, 2020, doi: 10.1177/0954410020910584.
  • [5] S.D. Prior, Optimizing Small Multi-Rotor Unmanned Aircraft. CRC Press, Taylor & Francis Group, 2018.
  • [6] G. Avanzini, E.L. de Angelis, and F. Giulietti, „Optimal performance and sizing of a battery-powered aircraft,” Aerosp. Sci. Technol., vol. 59, pp. 132-144, 2016, doi: 10.1016/j. Ast.2016.10.015.
  • [7] Z./ Goraj, A. Frydrychewicz, R. świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, S. Suchodolski, and W. Chajec, „High altitude long endurance unmanned aerial viehicle of a new generation-A design challange for a low cost, reliable and high performance aircraft,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 52, no. 3, pp. 173-194, 2004.
  • [8] D. Serrano, M. Ren., A.J. Qureshi, and S. Ghaemi, „Effect of disk angle-of-attack on aerodynamic performance of small propellers,” Aerosp. Sci. Technol., vol. 92, pp. 901-914, 2019, doi: 10.1016/j.ast.2019.07.022.
  • [9] D.G. Koenig, „V/STOL Wind Tunnel Testing,” NASA Ames Research Center, Tech. Rep. TM-85936, 1984.
  • [10] S. Xiang, Y.-qiang Liu, G. Tong, W.-ping Zhao, S.-xi Tong, and Y.-dong Li, „An improved propeller design method for the electric aircraft,” Aerosp. Sci. Technol., vol. 78, pp. 488-493, 2018, doi: 10.1016/j.ast.2018.05.008.
  • [11] M. Rostami and hamzeh Farajollahi, „Aerodynamic performance of mutual interaction tandem propellers with ducted uav,” Aerosp. Sci. Technol., vol. 108, p. 106399, 2021, doi: 10.1016/j.ast.2020.106399.
  • [12] A. Bacchini, E. Zcestino, B. Van Magill, and Verstraete, „Impact of lift propeller drag on the perfromance of evtol lift + cruise aircraft,” Aerosp. Sci. Technol., vol. 109, p. 106429, 2021, doi: 10.10/j.ast.2020.106429.
  • [13] M. Cerny and Breitsamter, „Investigation of small-scale propellers under non-axial inflow conditions,” Aerosp. Sci. Technol., vol. 106, p. 106048, 2020, doi: 10.1016/j.ast.2020.106048.
  • [14] C.E. Hughes and J.A. Gazzaniga, „Low-Speed Wind Tunnel Performance of Hogh-speed Counterrotation Propellers at Angleof-Attack,” NASA, Tech. Rep. TM-102292, 1989.
  • [15] R.E. Kuhn and J.W. Drapper, „Investigation of the Aerodynamic Characteristics Of The Win And Propeller Separately At Angles Of Attack Up To 90,” NACA, Tech. Rep. , 1263, 1956.
  • [16] H.C. McLemore and M.D. Cannon, „Aerodynamic Investigation Of A Four-Blade Propeller Operating Through An Angle-Of-At-track Range From 0 To 180,” NACA, Tech. Rep. 3228, 1954.
  • [17] C. Russell, J. Jung, G.C. Willink, and B. Glasner, „Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles,” NASA, Tech. Rep. TM-2018-219758, 2016.
  • [18] M.A.J. Kuitche, R.M. Botez, R. Viso, J.C. Maunand, and O.C. Moyao, “Blade element momentum new methodology and wind tunnel test performance evaluation for the UAS-S45 Bàlaam propeller,” CEAS Aeronaut. J., vol. 11, pp. 937–953, 2020, doi: 10.1007/s13272-020-00462-x.
  • [19] J.G. Leishman, Principles of Helicopter Aerodynamics, 2nd ed. Cambridge University Press, 2006.
  • [20] S. Drzewiecki, Theorie Generale de l’Helice. Paris, 1920.
  • [21] J.V. Foster and D. Hartman, “High-fidelity multi-rotor unmanned aircraft system (uas) simulation development for trajectory prediction under off-nominal flight dynamics,” in 17th AIAA Aviation Technology, Integration, and Operations Conference. AIAA, 2017, doi: 10.2514/6.2017-3271.
  • [22] K. Pobikrowska, “Wind tunnel testing of electric propulsion system for an unmanned vtol aircraft,” Master’s thesis,Warsaw University of Technology, 2019.
  • [23] R. Zawiski and M. Błachuta, “Modelling and optimal control system design for quadrotor platform – an extended approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, no. 3, pp. 535–550, 2014, doi: 10.2478/bpasts-2014-0058.
  • [24] M. Tyan, N.V. Nguyen, S. Kim, and J.-W. Lee, “Comprehensive preliminary sizing/resizing method for a fixed wing – vtol electric uav,” Aerosp. Sci. Technol., vol. 71, pp. 30–41, 2017, doi: 10.1016/j.ast.2017.09.008.
  • [25] J.S. Vanderover and K.D. Visser, “Analysis of a contrarotating propeller driven transport aircraft,” 2006, AIAA Student Paper Competition, Syracuse, New York, USA. 31 March–1 April.
  • [26] V. Štorch, M. Brada, and J. Nozicka, “Experimental setup for measurement of contra-rotating propellers,” in Proceedings Topical Problems of Fluid Mechanics 2017, D. Šimurda and T. Bodnár, Eds., 2017, pp. 285–294, doi: 10.14311/TPFM.2017.036.
  • [27] C.P. Coleman, “A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research,” NASA, Tech. Rep. TP-3675, 1997.
  • [28] B. Theys, G. Dimitriadis, P. Hendrick, and J. De Schutter, “Influence of propeller configuration on propulsion system efficiency of multi-rotor unmanned aerial vehicles,” in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016, pp. 195–201, doi: 10.1109/ICUAS.2016.7502520.
  • [29] J. Roskam, Airplane Aerodynamics and Performance. DARcorporation, 2016.
  • [30] J.C. Bell et al., “Development of a test-rig for exploring optimal conditions of small unmanned aerial vehicle co-axial rotor systems,” in International Conference on Manufacturing Engineering Systems, 2010, pp. 439–444.
  • [31] W. Zhou, Z. Ning, H. Li, and H. Hu, “An experimental investigation on rotor-to-rotor interactions of small uav propellers,” in 35th AIAA Applied Aerodynamics Conference. AIAA, 2017, doi: 10.2514/6.2017-3744.
Uwagi
The publication is supported by Project No.: POIR.01.01.01-00-0814/17 entitled: “Design and construction of unmanned medium and long-range aircraft enabling the transport of cargo or measuring equipment.” This Project is being realized in cooperation with the Spectre Solutions Sp. z o.o. company and is co-financed from EU funds under the Smart Growth Operational Programme 2014–2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af3e503a-495d-4760-a81a-0c3fd6df9d81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.