PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Heavy Metals from Aqueous Solutions with the Use of Lignins and Biomass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The overproduction of pollutants resulting from the development of industry causes the deposition of large amounts of toxic and carcinogenic substances, including heavy metals, in the aquatic ecosystem and other ecosystems. This is a civilisation problem of the present times, posing a serious threat to the natural environment, including humans. For this reason, it has recently become extremely important to develop effective methods to minimise the concentration of heavy metal ions in the aquatic systems and thus reduce their negative impact on the environment. One such technique is adsorption, which is believed to be an effective method of removing contaminants such as heavy metal ions from aqueous solutions. Looking at the available literaturę of the last few years, it can be concluded that adsorbents of natural origin are becoming more and more important. These are agricultural waste, all kinds of biomass, and waste from various industries. The study attempts to present and evaluate the sorption capacity of materials of natural origin, including oat bran, chitosan, alginate, tree bark, coconut fibre, and lignin. The use of such biosorbents is more friendly for the environment compared to their synthetic counterparts and perfectly fits the concept of sustainable development and the circular economy.
Słowa kluczowe
Rocznik
Strony
99--111
Opis fizyczny
Bibliogr. 121 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network-Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90-570 Lodz, Poland
  • Łukasiewicz Research Network-Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90-570 Lodz, Poland
  • Lodz University of Technology, Faculty of Chemistry, Lodz, Poland
autor
  • Łukasiewicz Research Network-Łódź Institute of Technology, 19/27 M. Skłodowskiej-Curie Str., 90-570 Lodz, Poland
Bibliografia
  • 1. Mousavi SJ, Parvini M, Ghorbani M. Experimental Design Data for the Zinc Ions Adsorption Based On Mesoporous Modified Chitosan Using Central Composite Design Method. Carbohydrate Polymers 2018; 188: 197-212. DOI: 10.1016/J.Carbpol.2018.01.105
  • 2. Kumar V, Parihar RD, Sharma A, Bakshi P, Singh Sidhu GP, Bali AS, Karaouzas I, Bhardwaj R, Thukral A.K, Gyasi-Agyei Y, Rodrigo-Comino J. Global Evaluation of Heavy Metal Content in Surface Water Bodies: A Meta-Analysis Using Heavy Metal Pollution Indices and Multivariate Statistical Analyses. Chemosphere 2019; 236, 124364. DOI: 10.1016/J.Chemosphere.2019.124364.
  • 3. Bolisetty S, Peydayesh M, Mezzenga R. Sustainable Technologies for Water Purification from Heavy Metals: Review and Analysis. Chemical Society Reviews 2019; 48(2): 463-487. DOI: 10.1039/C8cs00493e
  • 4. Ezeabara C, Okanume O, Emeka A, Okeke C, Mbaekwe E. Heavy Metal Contamination of Herbal Drugs: Implication for Human Health-a Review. International Journal Of Tropical Disease & Health 2014; 4(10): 1044-58. DOI: 10.9734/Ijtdh/2014/11481.
  • 5. Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C. Removal of Metal Ions Using a New Magnetic Chitosan Nano-Bio-Adsorbent; A Powerful Approach in Water Treatment. Environmental Research 2022; 203: 111753. DOI: 10.1016/J.Envres.2021.111753.
  • 6. Baby R, Saifullah B, Hussein MZ. Palm Kernel Shell as an Effective Adsorbent for the Treatment of Heavy Metal Contaminated Water. Scientific Reports 2019; 9(1). DOI: 10.1038/S41598-019-55099-6.
  • 7. Cheshmazar E, Arfaeinia H, Karimyan K, Sharafi H, Hashemi SE. Dataset for Effect Comparison of Irrigation by Wastewater and Ground Water on Amount of Heavy Metals in Soil and Vegetables: Accumulation, Transfer Factor and Health Risk Assessment. Data in Brief 2018; 18, 1702-10. DOI: 10.1016/J.Dib.2018.04.108.
  • 8. Yadav VB, Gadi R, Kalra S. Clay Based Nanocomposites for Removal of Heavy Metals from Water: A Review. Journal Of Environmental Management 2019; 232: 803-17. DOI: 10.1016/J.Jenvman.2018.11.120.
  • 9. Dhakal RP, Ghimire KN, Inoue K, Yano M, Makino K. Acidic Polysaccharide Gels for Selective Adsorption of Lead (II) Ion. Separation and Purification Technology 2005; 42(3): 219-25. DOI: 10.1016/J.Seppur.2004.07.016.
  • 10. Chakraborty R, Asthana A, Singh AK, Jain B, Susan AB. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review. International Journal Of Environmental Analytical Chemistry 2020; 1-38. DOI: 10.1080/03067319.2020.1722811.
  • 11. Mansoorian HJ, Mahvi AH, Jafari AJ. Removal of Lead and Zinc from Battery Industry Wastewater Using Electrocoagulation Process: Influence of Direct and Alternating Current by Using Iron and Stainless Steel Rod Electrodes. Separation and Purification Technology 2014; 135: 165-75. DOI: 10.1016/J.Seppur.2014.08.012.
  • 12. Fernández Y, Marañón E, Castrillón L, Vázquez I. Removal of Cd and Zn from Inorganic Industrial Waste Leachate by Ion Exchang. Journal Of Hazardous Materials 2005; 126 (1-3): 169-75. DOI: 10.1016/J.Jhazmat.2005.06.016.
  • 13. Castelblanque J, Salimbeni F. NF and RO Membranes for the Recovery and Reuse of Water and Concentrated Metallic Salts from Waste Water Produced in the Electroplating Process. Desalination 2004; 167, 65-73. DOI: 10.1016/ J.Desal.2004.06.114.
  • 14. Kurniawan TA, Chan GY, Lo WH, Babel S. Physico–Chemical Treatment Techniques for Wastewater Laden with Heavy Metals. Chemical Engineering Journal 2006; 118(1-2): 83-98. DOI: 10.1016/J.Cej.2006.01.015.
  • 15. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH. Heavy Metal Water Pollution: A Fresh Look About Hazards, Novel And Conventional Remediation Methods. Environmental Technology & Innovation 2021; 22, 101504. DOI: 10.1016/J.Eti.2021.101504.
  • 16. Bilal M, Ihsanullah I, Younas M, Ul Hassan Shah M. Recent Advances in Applications of Low-Cost Adsorbents for the Removal of Heavy Metals from Water: A Critical Review. Separation and Purification Technology 2022; 278, 119510. DOI: 10.1016/J.Seppur.2021.119510.
  • 17. Sud D, Mahajan G, Kaur M. Agricultural Waste Material As Potential Adsorbent For Sequestering Heavy Metal Ions from Aqueous Solutions – A Review. Bioresource Technology 2008; 99(14): 6017-27. DOI:10.1016/j.Biortech.2007.11.064.
  • 18. Lagergren S. About the Theory of So-Called Adsorption of Soluble Substances. Kungliga Svenska Vetenskapsakademiens, Handlingar, Band 24, 1898, 1-39.
  • 19. Ho YS, Mckay G. Pseudo-Second Order Model for Sorption Processes. Process Biochemistry 1999; 34(5): 451-65. DOI:10.1016/S0032-9592(98)00112-5.
  • 20. Ge Y, Li Z, Kong Y, Song Q, Wang K. Heavy Metal Ions Retention by Bi-Functionalized Lignin: Synthesis, Applications and Adsorption Mechanisms. Journal Of Industrial And Engineering Chemistry 2014; 20(6):4429-36. DOI:10.1016/J.Jiec.2014.02.011.
  • 21. Low KS, Lee CK, Liew SC. Sorption of Cadmium and Lead from Aqueous Solutions by Spent Grain. Process Biochemistry 2000; 36(1-2):59-64. DOI:10.1016/S0032-9592(00)00177-1.
  • 22. Ding P, Huang KL, Li GY, Zeng WW. Mechanisms and Kinetics of Chelating Reaction Between Novel Chitosan Derivatives and Zn(II). Journal of Hazardous Materials 2007; 146(1-2): 58-64. DOI:10.1016/J.Jhazmat.2006.11.061.
  • 23. Wu Y, Zhang S, Guo X, Huang H. Adsorption of Chromium(III) on Lignin. Bioresource Technology 2008; 99(16): 7709-15. DOI:10.1016/ J.Biortech.2008.01.069
  • 24. Liang FB, Song YL, Huang CP, Zhang J, Chen BH. Adsorption of Hexavalent Chromium on a Lignin-Based Resin: Equilibrium, Thermodynamics, and Kinetics. Journal of Environmental Chemical Engineering 2013; 1(4): 1301-8. DOI:10.1016/J.Jece.2013.09.025.
  • 25. Brdar M, Takaci A, Sciban M, Rakic D. Isotherms for the Adsorption of Cu(II) onto Lignin: Comparison of Linear and Non-Linear Methods. Chemical Industry 2012; 66(4): 497-503. DOI:10.2298/Hemind111114003b.
  • 26. Wu Q, Ren M, Zhang X, Li C, Li T, Yang Z, Chen Z, Wang L. Comparison of Cd(II) Adsorption Properties onto Cellulose, Hemicellulose and Lignin Extracted from Rice Bran. LWT 2021; 144: 111230. DOI:10.1016/J.Lwt.2021.111230.
  • 27. Zhang Y, Zheng R, Zhao J, Zhang Y, Wong PK, Ma F. Biosorption of Zinc from Aqueous Solution using Chemically Treated Rice Husk. Biomed Research International 2013; 2013:1-7. DOI:10.1155/2013/365163.
  • 28. Zhang Y, Zheng R, Zhao J, Zhang Y, Wong PK, Ma F. Biosorption of Zinc from Aqueous Solution Using Chemically Treated Rice Husk. Biomed Research International 2013; 1-7. DOI:10.1155/2013/365163.
  • 29. Ahmad F, Zaidi S. Potential use of Agro/Food Wastes as Biosorbents in the Removal of Heavy Metals. Emerging Contaminants 2020; Intechopen.
  • 30. Bartczak P, Norman M, Klapiszewski Ł, Karwańska N, Kawalec M, Baczyńska M, Wysokowski M, Zdarta J, Ciesielczyk F, Jesionowski T. Removal of Nickel(II) and Lead(II) Ions from Aqueous Solution Using Peat as a Low-Cost Adsorbent: A Kinetic and Equilibrium Study. Arabian Journal Of Chemistry 2018; 11(8): 1209-22. DOI:10.1016/J.Arabjc.2015.07.018.
  • 31. Ahmad M, Manzoor K, Ikram S. Versatile Nature of Hetero-Chitosan Based Derivatives as Biodegradable Adsorbent for Heavy Metal Ions. A Review. International Journal Of Biological Macromolecules 2017; 105: 190-203. DOI:10.1016/J.Ijbiomac.2017.07.008.
  • 32. Xiao F, Cheng J, Cao W, Yang C, Chen J, Luo Z. Removal of Heavy Metals from Aqueous Solution Using Chitosan Combined Magnetic Biochars. Journal of Colloid and Interface Science 2019; 540: 579-84. DOI:10.1016/J.Jcis.2019.01.068.
  • 33. Kavitha E, Sowmya A, Prabhakar S, Jain P, Surya R, Rajesh MP. Removal and Recovery of Heavy Metals through Size Enhanced Ultrafiltration Using Chitosan Derivatives and Optimization with Response Surface Modeling. International Journal Of Biological Macromolecules 2019; 132: 278-88. DOI:10.1016/J.Ijbiomac.2019.03.128.
  • 34. Khan A, Ali N, Bilal M, Malik S, Badshah S, Iqbal HM. Engineering Functionalized Chitosan-Based Sorbent Material: Characterization and Sorption of Toxic Elements. Applied Sciences 2019; 9(23): 5138. DOI:10.3390/App9235138.
  • 35. Ali N, Khan A, Malik S, Badshah S, Bilal M, Iqbal HM. Chitosan-Based Green Sorbent Material for Cations Removal From an Aqueous Environment. Journal Of Environmental Chemical Engineering 2020; 8(5): 104064. DOI:10.1016/J.Jece.2020.104064.
  • 36. Borsagli FG, Borsagli A. Chemically Modified Chitosan Bio-Sorbents for the Competitive Complexation of Heavy Metals Ions: A Potential Model for the Treatment of Wastewaters and Industrial Spills. Journal of Polymers and the Environment 2019; 27(7): 1542-56. DOI:10.1007/S10924-019-01449-4.
  • 37. Pooladi A, Bazargan-Lari R. Simultaneous Removal of Copper and Zinc Ions by Chitosan/Hydroxyapatite/Nano-Magnetite Composite. Journal of Materials Research and Technology 2020; 9(6): 14841-52. DOI:10.1016/J.Jmrt.2020.10.057.
  • 38. Anquan D, Li P. Removal of Zinc and Copper Ions from Water by Chitosan Coated Permutite Granules, International Conference on Materials for Renewable Energy and Environment (ICMREE), Chengdu, China, IEEE; 2013 DOI: 10.1109/Icmree.2013.6893731.
  • 39. Seyedmohammadi J, Motavassel M, Maddahi MH, Nikmanesh S. Application of Nanochitosan and Chitosan Particles for Adsorption of Zn(II) Ions Pollutant from Aqueous Solution to Protect Environment. Modeling Earth Systems and Environment 2016; 2(3). DOI:10.1007/S40808-016-0219-2.
  • 40. Kwiatkowska S, Wójcik. The Use of Alginates for The Sorption of Cu (II) Ions (In Polish) Zeszyty Naukowe. Inżynieria Chemiczna i Procesowa, Politechnika Łódzka, 1999; Z. 26: 75-80.
  • 41. Gao X, Guo C, Hao J, Zhao Z, Long H, Li M. Adsorption of Heavy Metal Ions by Sodium Alginate Based Adsorbent-A Review and New Perspectives. International Journal Of Biological Macromolecules 2020; 164: 4423-34. DOI: 10.1016/J.Ijbiomac.2020.09.046.
  • 42. Hasan MM. Algae As Nutrition, Medicine and Cosmetic: The Forgotten History, Present Status and Future Trends. World Journal of Pharmacy and Pharmaceutical Sciences 2017; 1934-59. DOI: 10.20959/Wjpps20176-9447.
  • 43. Wang Y, Feng Y, Zhang XF, Zhang X, Jiang J, YaoJ. Alginate-Based Attapulgite Foams as Efficient and Recyclable Adsorbents for the Removal of Heavy Metals. Journal of Colloid and Interface Science 2018; 514: 190-8. DOI:10.1016/J.Jcis.2017.12.035.
  • 44. Yang N, Wang R, Rao P, Yan L, Zhang W, Wang J, Chai F. The Fabrication of Calcium Alginate Beads as a Green Sorbent for Selective Recovery of Cu(II) from Metal Mixtures. Crystals 2019; 9(5): 255. DOI:10.3390/Cryst9050255.
  • 45. Kołodyńska D, Gęca M, Skwarek E, Goncharuk O. Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions. Nanoscale Research Letters 2018; 13(1). DOI:10.1186/S11671-018-2512-7.
  • 46. Nastaj J, Przewłocka A, Rajkowska-Myśliwiec M. Biosorption Of Ni(II), Pb(II) and Zn(II) on Calcium Alginate Beads: Equilibrium, Kinetic and Mechanism Studies. Polish Journal of Chemical Technology 2016; 18(3): 81-7. DOI:10.1515/Pjct-2016-0052.
  • 47. Cardoso SL, Costa CS, Da Silva MG, Vieira MG. Insight Into Zinc(II) Biosorption on Alginate Extraction Residue: Kinetics, Isotherm and Thermodynamics. Journal Of Environmental Chemical Engineering 2020; 8(3): 103629. DOI:10.1016/ J.Jece.2019.103629.
  • 48. Wei Zhan, Chuanhui Xu, Guangfu Qian, Guohuan Huang, Xiuzhen Tang, Baofeng Lin: Adsorption Of Cu(II), Zn(II), and Pb(II) from Aqueous Single and Binary Metal Solutions by Regenerated Cellulose and Sodium Alginate Chemically Modified with Polyethyleneimine. RSC Advances 2018; 33. DOI: 10.1039/C8ra02055h.
  • 49. Ighalo JO, Adeniyi AG. Adsorption of Pollutants by Plant Bark Derived Adsorbents: an Empirical Review. Journal of Water Process Engineering 2020; 35: 101228. DOI:10.1016/J.Jwpe.2020.101228.
  • 50. Al Talebi, Zainab Abbas. Agri-Food Wastes For Heavy Metals Removal From Water. IOP Conference Series: Materials Science And Engineering. IOP Publishing, 2021; 1-12. DOI:10.1088/1757-899X/1058/1/012020.
  • 51. Vasudevan M, Ajithkumar PS, Singh RP, Natarajan N. Mass Transfer Kinetics Using Two-Site Interface Model for Removal of Cr(VI) from Aqueous Solution with Cassava Peel and Rubber Tree Bark as Adsorbents. Environmental Engineering Research 2016; 21(2): 152-63. DOI:10.4491/Eer.2015.152.
  • 52. Bailey SE, Olin TJ, Bricka RM, Adrian DD. A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Research. 1999; 33(11): 2469-79. DOI:10.1016/S0043-1354(98)00475-8.
  • 53. Akar S, Lorestani B, Sobhanardakani S, Cheraghi M, Moradi O. Surveying the Efficiency of Platanus Orientalis Bark as Biosorbent for Ni And Cr(VI) Removal from Plating Wastewater as a Real Sample. Environmental Monitoring and Assessment, 2019; 191(6). DOI:10.1007/S10661-019-7479-Z.
  • 54. Singh U, Singh BP, Yadav A, Singh KK. Sorption of Copper And Zinc Using Fibres of Cocos Nucifera. Journal of Chemical And Pharmaceutical Research 2011; 3(1): 707-714, ISSN No: 0975-7384.
  • 55. Igwe JC, Abia AA, Ibeh CA. Adsorption Kinetics and Intraparticulate Diffusivities of Hg, As and Pb Ions on Unmodified and Thiolated Coconut Fiber. International Journal of Environmental Science & Technology. 2007; 5(1): 83-92. DOI:10.1007/Bf03326000.
  • 56. Joseph L, Jun BM, Flora JR, Park CM, Yoon Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 2019; 229: 142-59. DOI:10.1016/ J.Chemosphere.2019.04.198.
  • 57. Afroze S, Sen TK. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water, Air, Soil Pollution 2018; 229(7): 1-50. DOI:10.1007/S11270-018-3869-Z.
  • 58. Srivastava S, Agrawal SB, Mondal MK. A Review on Progress of Heavy Metal Removal Using Adsorbents of Microbial and Plant Origin. Environmental Science and Pollution Research 2015; 22(20): 15386-415. DOI:10.1007/S11356-015-5278-9.
  • 59. Bulgariu L, Bulgariu D. Functionalized Soy Waste Biomass - A Novel Environmental-Friendly Biosorbent for the Removal of Heavy Metals from Aqueous Solution. Journal of Cleaner Production 2018; 197: 875-85. DOI: 10.1016/J.Jclepro.2018.06.261.
  • 60. Choi HJ, Lee SM. Heavy Metal Removal from Acid Mine Drainage by Calcined Eggshell and Microalgae Hybrid System. Environmental Science And Pollution Research 2015; 22(17): 13404-11. DOI:10.1007/S11356-015-4623-3.
  • 61. Harripersadth C, Musonge P, Makarfi Isa Y, Morales MG, Sayago A. The Application of Eggshells and Sugarcane Bagasse as Potential Biomaterials in the Removal of Heavy Metals from Aqueous Solutions. South African Journal of Chemical Engineering 2020; 34: 142-50. DOI:10.1016/J.Sajce.2020.08.002.
  • 62. Petrella A, Spasiano D, Acquafredda P, De Vietro N, Ranieri E, Cosma P, Rizzi V, Petruzzelli V, Petruzzelli D. Heavy Metals Retention (Pb(II), Cd(II), Ni(II)) from Single and Multimetal Solutions by Natural Biosorbents from the Olive Oil Milling Operations. Process Safety and Environmental Protection 2018; 114: 79-90. DOI:10.1016/J.Psep.2017.12.010.
  • 63. Chao HP, Chang CC, Nieva A. Biosorption of Heavy Metals on Citrus Maxima Peel, Passion Fruit Shell, and Sugarcane Bagasse in a Fixed-Bed Column. Journal Of Industrial And Engineering Chemistry 2014; 20(5): 3408-14. DOI:10.1016/ J.Jiec.2013.12.027.
  • 64. Martins AE, Pereira MS, Jorgetto AO, Martines MA, Silva RI, Saeki MJ, Castro GR. The Reactive Surface of Castor Leaf Ricinus Communis L. Powder as a Green Adsorbent for the Removal of Heavy Metals from Natural River Water. Applied Surface Science 2013; 276: 24-30. DOI:10.1016/J.Apsusc.2013.02.096.
  • 65. Ganesan S. Waste Fruit Cortexes For The Removal Of Heavy Metals From Water. Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water 2021; 323-350. DOI:10.1007/978-3-030-47400-3_13.
  • 66. Wang Q, Li JS, Poon CS. Recycling of Incinerated Sewage Sludge Ash as an Adsorbent for Heavy Metals Removal from Aqueous Solutions. Journal Of Environmental Management 2019; 247: 509-17. DOI:10.1016/ J.Jenvman.2019.06.115.
  • 67. Gupta AD, Rawat KP, Bhadauria V, Singh H. Recent Trends in the Application of Modified Starch in the Adsorption of Heavy Metals from Water: A Review. Carbohydrate Polymers 2021; 269: 117763. DOI:10.1016/ J.Carbpol.2021.117763.
  • 68. Haq F, Yu H, Wang L, Teng L, Haroon M, Khan RU, Mehmood S, Bilal-Ul-Amin, Ullah RS, Khan A, Nazir A. Advances In Chemical Modifications of Starches and their Applications. Carbohydrate Research 2019; 476: 12-35. DOI: 10.1016/J.Carres.2019.02.007.
  • 69. Dupont L, Bouanda J, Dumonceau J, Aplincourt M. Biosorption of Cu(II) and Zn(II) Onto a Lignocellulosic Substrate Extracted from Wheat Bran. Environmental Chemistry Letters 2005; 2(4): 165-8. DOI:10.1007/S10311-004-0095-2.
  • 70. Iqbal M, Saeed A, Kalim I. Characterization of Adsorptive Capacity and Investigation of Mechanism of Cu2+, Ni2+ and Zn2+ Adsorption on Mango Peel Waste from Constituted Metal Solution and Genuine Electroplating Effluent. Separation Science And Technology 2009; 44(15): 3770-91. DOI: 10.1080/01496390903182305.
  • 71. Banu I. Sorption Kinetics of Zinc and Nickel Ions on Maize Cob. Scientific Study & Research VII (2), 2006; 331-336, ISSN 1582-540X.
  • 72. Thakur LS, Parmar M. Adsorption of Heavy Metal (Cu2+, Ni2+ And Zn2+) from Synthetic Waste Water by Tea Waste Adsorbent. International Journal of Chemical and Physical Sciences 2013; 2(6): 6–19.
  • 73. Sud D, Mahajan G, Kaur M. Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions – A Review. Bioresource Technology 2008; 99(14): 6017-27. DOI:10.1016/ J.Biortech.2007.11.064.
  • 74. Luef E, Prey T, Kubicek CP. Biosorption of Zinc by Fungal Mycelial Wastes. Applied Microbiology and Biotechnology 1991; 34(5): 688-92. DOI: 10.1007/Bf00167924.
  • 75. Tahir A, Akram A, Ahmed AM, Sholkamy EN, Mostafa AA. In Vitro Compatibility of Fungi for the Biosorption of Zinc(II) and Copper(II) from Electroplating Effluent. Current Science 2017; 112(04): 839. DOI:10.18520/Cs/V112/I04/839-844.
  • 76. Kılıç Z, Atakol O, Aras S, Cansaran-Duman D, Emregul E. Biosorption Properties of Zinc(II) from Aqueous Solutions by Pseudevernia Furfuracea (L.) Zopf. Journal Of The Air & Waste Management Association 2014; 64(10): 1112-21. DOI:10.1080/10962247.2014.926299.
  • 77. Borowiecki T, Kijeński J, Machnikowski J, Ściążko M. Clean Energy, Chemical Products and Coal Fuels - Evaluation of the Development Potential. (In Polish), ICHPW, Zabrze 2008.
  • 78. Ricordel S. Heavy Metals Removal by Adsorption onto Peanut Husks Carbon: Characterization, Kinetic Study and Modeling. Separation and Purification Technology 2001; 24(3): 389-401. DOI:10.1016/S1383-5866(01)00139-3.
  • 79. Mishra V, Majumder CB, Agarwal VK. Sorption of Zn(II) Ion onto the Surface of Activated Carbon Derived from Eucalyptus Bark Saw Dust from Industrial Wastewater: Isotherm, Kinetics, Mechanistic Modeling, and Thermodynamics. Desalination and Water Treatment 2012; 46(1-3): 332-51. DOI:10.1080/19443994.2012.677556.
  • 80. Tuomikoski Kupila, Romar Bergna, Kangas Runtti, Lassi. Zinc Adsorption by Activated Carbon Prepared from Lignocellulosic Waste Biomass. Applied Sciences 2019; 9(21): 4583. DOI:10.3390/App9214583.
  • 81. Jędrzejczak P, Collins MN, Jesionowski T, Klapiszewski Ł. The Role of Lignin and Lignin-Based Materials in Sustainable Construction - A Comprehensive Review. International Journal Of Biological Macromolecules 2021; 187: 624-50. DOI:10.1016/J.Ijbiomac.2021.07.125.
  • 82. Klapiszewski Ł, Szalaty TJ, Jesionowski T. Depolymerization and Activation of Lignin: Current State of Knowledge and Perspectives Trends and Applications, Editor: Poletto M. Intechopen 2018; ISBN: 978-953-51-3902-7, DOI: 10.5772/Intechopen.70376.
  • 83. Surewicz W. Fundamentals of Pulp Technology (In Polish), Wydawnictwa Naukowo-Techniczne Warszawa, 1971.
  • 84. Wandelt P. Technology Of Cellulose And Paper. Pulp Technology (In Polish), Wydawnictwa Szkolne i Pedagogiczne, Warszawa, 1996.
  • 85. Saratale RG, Saratale GD, Ghodake G, Cho SK, Kadam A, Kumar G, Jeon BH, Pant D, Bhatnagar A, Shin HS. Wheat Straw Extracted Lignin in Silver Nanoparticles Synthesis: Expanding its Prophecy Towards Antineoplastic Potency and Hydrogen Peroxide Sensing Ability. International Journal of Biological Macromolecules 2019; 128:391-400. DOI:10.1016/ J.Ijbiomac.2019.01.120.
  • 86. Ganewatta MS, Lokupitiya HN, Tang C. Lignin Biopolymers in the Age of Controlled Polymerization. Polymers 2019; 11(7):1176. DOI: 10.3390/Polym11071176.
  • 87. Karmanov AP, Kanarsky AV, Kocheva LS, Belyy VA, Semenov EI, Rachkova NG, Bogdanovich NI, Pokryshkin SA. Chemical Structure and Polymer Properties of Wheat and Cabbage Lignins – Valuable Biopolymers For Biomedical Applications. Polymer 2021; 220: 123571. DOI: 10.1016/J.Polymer.2021.123571.
  • 88. Tortora M, Cavalieri F, Mosesso P, Ciaffardini F, Melone F, Crestini C. Ultrasound Driven Assembly of Lignin into Microcapsules for Storage and Delivery of Hydrophobic Molecules. Biomacromolecules 2014, 15(5): 1634-43. DOI:10.1021/Bm500015 j.
  • 89. Rahman MM, Arafat KM, Jin Y, Chen H, Jahan MS. Structural Characterization of Potassium Hydroxide Liquor Lignin and Its Application in Biorefinery. Biomass Conversion and Biorefinery 2021. DOI:10.1007/S13399-020-01202-1.
  • 90. Schneider WD, Dillon AJ, Camassola M. Lignin Nanoparticles Enter the Scene: A Promising Versatile Green Tool For Multiple Applications. Biotechnology Advances 2020. DOI:10.1016/ J.Biotechadv.2020.107685.
  • 91. Bruijnincx P, Weckhuysen B, Gruter GJ, Westenbroek A, Edith Engelen-Smeets: Lignin Valorisation 2016, The Importance of a Full Value Chain Approach, Utrecht University, 2016; Page 1- 22, OCLC Number:951662206.
  • 92. Ge Y, Li Z. Application of Lignin and its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chemistry & Engineering 2018; 6(5): 7181-92. DOI: 10.1021/Acssuschemeng.8b01345.
  • 93. Zijlstra DS, De Santi A, Oldenburger B, De Vries J, Barta K, Deuss PJ. Extraction of Lignin with High Β-O-4 Content by Mild Ethanol Extraction and Its Effect on the Depolymerization Yield. Journal of Visualized Experiments 2019; (143). DOI:10.3791/58575.
  • 94. Bertella S, Luterbacher JS. Lignin Functionalization for the Production of Novel Materials. Trends in Chemistry 2020; 2(5): 440-53. DOI: 10.1016/ J.Trechm.2020.03.001.
  • 95. Martín-Sampedro R, Santos JI, Fillat Ú, Wicklein B, Eugenio ME, Ibarra D. Characterization of Lignins from Populus Alba L. Generated as by-Products in Different Transformation Processes: Kraft Pulping, Organosolv and Acid Hydrolysis. International Journal of Biological Macromolecules 2019; 126: 18-29. DOI: 10.1016/J.Ijbiomac.2018.12.158.
  • 96. Dessbesell L, Paleologou M, Leitch M, Pulkki R, Xu C. Global Lignin Supply Overview and Kraft Lignin Potential as an Alternative for Petroleum-Based Polymers. Renewable and Sustainable Energy Reviews 2020; 123: 109768. DOI:10.1016/J.Rser.2020.109768.
  • 97. Chen H, Qu X, Liu N, Wang S, Chen X, Liu S. Study of the Adsorption Process of Heavy Metals Cations on Kraft Lignin. Chemical Engineering Research and Design 2018; 139: 248-58. DOI:10.1016/J.Cherd.2018.09.028.
  • 98. Li Jingjing. Isolation of Lignin from Wood, Faculty of Technology, Imatra Paper Technology, Bachelor’s Thesis 2011.
  • 99. Judith Becker, Christoph Wittmann: A Field of Dreams: Lignin Valorization into Chemicals, Materials, Fuels, and Health-Care Products, Biotechnology Advances, 2019; 37(6). DOI:10.1016/J.Biotechadv.2019.02.016.
  • 100. Singh SK. Solubility of Lignin and Chitin in Ionic Liquids and their Biomedical Applications. International Journal of Biological Macromolecules 2019; 132: 265-77. DOI:10.1016/J.Ijbiomac.2019.03.182.
  • 101. Bulgariu L, Bulgariu D, Malutan T, Macoveanu M. Adsorption of Lead(II) Ions from Aqueous Solution onto Lignin. Adsorption Science & Technology 2009; 27(4):435-45. DOI:10.1260/026361709790252623.
  • 102. Pagnanelli F, Mainelli S, Vegliò F, Toro L. Heavy Metal Removal by Olive Pomace: Biosorbent Characterisation and Equilibrium Modelling. Chemical Engineering 2003; 58(20): 4709-17. DOI:10.1016/J.Ces.2003.08.001.
  • 103. Strzemiecka B, Klapiszewski Ł, Jamrozik A, Szalaty T, Matykiewicz D, Sterzyński T, Voelkel A, Jesionowski T. Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools. Materials 2016; 9(7): 517. DOI:10.3390/Ma9070517.
  • 104. Ge Y, Li Z. Application of Lignin and its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chemistry & Engineering 2018; 6(5): 7181-92. DOI: 10.1021/Acssuschemeng.8b01345.
  • 105. Szalaty TJ, Klapiszewski Ł, Jesionowski T. Recent Developments in Modification of Lignin Using Ionic Liquids for the Fabrication of Advanced Materials – A Review. Journal Of Molecular Liquids 2020; 301, 112417. DOI: 10.1016/J.Molliq.2019.112417.
  • 106. Kweon DK, Choi JK, Kim EK, Lim ST. Adsorption of Divalent Metal Ions by Succinylated and Oxidized Corn Starches. Carbohydrate Polymers 2001; 46(2): 171-7. DOI: 10.1016/S0144-8617(00)00300-3.
  • 107. Ghiorghita CA, Borchert KB, Vasiliu AL, Zaharia MM, Schwarz D, Mihai M. Porous Thiourea-Grafted-Chitosan Hydrogels: Synthesis and Sorption of Toxic Metal Ions from Contaminated Waters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020; 607, 125504. DOI: 10.1016/J.Colsurfa.2020.125504.
  • 108. Jiang H, Yang Y, Lin Z, Zhao B, Wang J, Xie J, Zhang A. Preparation of a Novel Bio-Adsorbent of Sodium Alginate Grafted Polyacrylamide/Graphene Oxide Hydrogel for the Adsorption of Heavy Metal Ion. Science of the Total Environment 2020; 744, 140653. DOI: 10.1016/J.Scitotenv.2020.140653.
  • 109. Ge Y, Li Z, Kong Y, Song Q, Wang K. Heavy Metal Ions Retention by Bi-Functionalized Lignin: Synthesis, Applications and Adsorption Mechanisms. Journal of Industrial and Engineering Chemistry 2014; 20(6): 4429-36. DOI:10.1016/J.Jiec.2014.02.011.
  • 110. Popovic AL, Rusmirovic JD, Velickovic Z, Kovacevic T, Jovanovic A, Cvijetic I, Marinkovic AD. Kinetics and Column Adsorption Study of Diclofenac and Heavy-Metal Ions Removal by Amino-Functionalized Lignin Microspheres. Journal of Industrial and Engineering Chemistry 2021; 93: 302-14. DOI:10.1016/J.Jiec.2020.10.006.
  • 111. Jin C, Liu G, Wu G, Huo S, Liu Z, Kong Z. Facile Fabrication of Crown Ether Functionalized Lignin-Based Biosorbent for the Selective Removal of Pb(II), Industrial Crops and Products 2020; 155, 112829. DOI: 10.1016/J.Indcrop.2020.112829.
  • 112. Peng X, Wu Z, Li Z. A Bowl-Shaped Biosorbent Derived From Sugarcane Bagasse Lignin for Cadmium Ion Adsorption. Cellulose 2020; 27(15): 8757-68. DOI:10.1007/S10570-020-03376-3.
  • 113. Zhang Y, Ni S, Wang X, Zhang W, Lagerquist L, Qin M, Willför S, Xu C, Fatehi P. Ultrafast Adsorption of Heavy Metal Ions onto Functionalized Lignin-Based Hybrid Magnetic Nanoparticles. Chemical Engineering Journal 2019; 372: 82-91. DOI:10.1016/J.Cej.2019.04.111.
  • 114. Klapiszewski Ł, Bartczak P, Szatkowski T, Jesionowski T. Removal of Lead(II) Ions by an Adsorption Process with the Use of an Advanced SiO2/Lignin Biosorbent, Polish Journal of Chemical Technology 2017; 19(1): 48-53. DOI:10.1515/Pjct-2017-0007.
  • 115. Shi X, Qiao Y, An X, Tian Y, Zhou H., High-Capacity Adsorption of Cr(VI) by Lignin-Based Composite: Characterization, Performance and Mechanism. International Journal of Biological Macromolecules 2020; 159: 839-49. DOI:10.1016/J.Ijbiomac.2020.05.130.
  • 116. Duan Y, Freyburger A, Kunz W, Zollfrank C., Lignin/Chitin Films and their Adsorption Characteristics for Heavy Metal Ions. Acs Sustainable Chemistry & Engineering 2018; 6(5): 6965-73. DOI:10.1021/Acssuschemeng.8b00805.
  • 117. Nair V, Panigrahy A, Vinu R. Development of Novel Chitosan-Lignin Composites for Adsorption of Dyes and Metal Ions from Wastewater. Chemical Engineering Journal 2014; 254, 491-502. DOI: 10.1016/J.Cej.2014.05.045.
  • 118. Sun XF, Hao Y, Cao Y, Zeng Q. Superadsorbent Hydrogel Based on Lignin and Montmorillonite for Cu(II) Ions Removal From Aqueous Solution. International Journal Of Biological Macromolecules 2019; 127: 511-9. DOI: 10.1016/J.Ijbiomac.2019.01.058.
  • 119. Mohan D, Pittman CU, Steele PH. Single, Binary and Multi-Component Adsorption of Copper and Cadmium from Aqueous Solutions on Kraft Lignin-A Biosorbent. Journal of Colloid And Interface Science 2006; 297(2): 489-504. DOI: 10.1016/J.Jcis.2005.11.023.
  • 120. Stahel W. The Circular Economy. Nature 2016; 531: 435–438. DOI:10.1038/531435a
  • 121. Wan Ngah WS, Hanafiah MA. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresource Technology 2008; 99(10): 3935-48. DOI:10.1016/J.Biortech.2007.06.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af38b437-cdf6-4eef-8f6a-0f28c46b4a81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.