PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A computer aided analysis and forecasting of gas reservoir production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a methodology for analysing historical gas production data and determining the gas reserves and the petrophysical parameters of a reservoir-aquifer system. These parameters are obtained from a fitting algorithm using production data sets. A forecast of the future field gas production can be created on the calibrated mathematical model basis. The developed method is based on the material balance assumptions and the widely used Fetkovich and van Everdingen-Hurst equations for calculating water influx. To conduct the calculations and analyse production data, the computer application was developed using Python programming language. A user-friendly graphical interface makes the proposed application convenient and intuitive to use. The software was calibrated based on the literature data from the gas field of known parameters and then validated using five case studies of the actual gas fields in the Polish Carpathian Foredeep. From the tests, very high compatibility between the computed and the real field values were obtained. An additional comparison with the commercial program MatBal confirmed the proper functioning of the application.
Rocznik
Strony
565--601
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] L.P. Dake, Fundamentals of Reservoir Engineering, Elsevier, Amsterdam (1978).
  • [2] P. Diamond, J. Ovens, Practical Aspects of Gas Material Balance: Theory and Application. SPE-142963. (2011). DOI: https://doi.org/10.2118/142963-MS.
  • [3] J. Hagoort, Fundamentals of Gas Reservoir Engineering, Elsevier Science, New York (1988).
  • [4] D.A. Lupu, D.A. Stefanescu, I. Foidas, Analyzing and Forecasting the Performance of Water Drive Gas Reservoirs. AGH Drilling, Oil, Gas 36 (1), 143-159 (2019). DOI: http://dx.doi.org/10.7494/drill.2019.36.1.143.
  • [5] L. Vega, R.A. Wattenbarger, New Approach for Simultaneous Determination of the and Aquifer Performance with No Prior Knowledge of Aquifer Properties and Geometry. SPE-59781-MS. (2000). DOI: https://doi.org/10.2118/59781-MS.
  • [6] J.L. Pletcher, Improvements to Reservoir Material-Balance Methods. SPE-62882-MS. (2000). DOI: https://doi.org/10.2118/62882-MS.
  • [7] F.W. Cole, Reservoir Engineering Manual. Gulf Publishing, Houston, TX (1969).
  • [8] B.C. Craft, M.F.Jr. Hawkins, Applied petroleum reservoir engineering, Second Edition, Prentice Hall Inc., Engle wood Cliffs, NJ (1991).
  • [9] R.G. Agarwal, R. Al-Hussainy, H.J.Jr. Ramey, The importance of water influx in gas reservoirs. J. Petrol. Technol. 17 (11), 1336-1342 (1965). DOI: https://doi.org/10.2118/1244-PA.
  • [10] J.A. Al-Ghanim, I.S. Nashawi, A. Malallah, Prediction of Water Influx of Edge – Water Drive Reservoirs Using Nonparametric Optimal Transformations. SPE 150662. (2012). DOI: https://doi.org/10.2118/150662-MS.
  • [11] B. Wang, T.S. Teasdale, GASWAT-PC: A Microcomputer Program for Gas Material Balance With Water Influx. SPE-16484-MS. (1987). DOI: https://doi.org/10.2118/16484-MS.
  • [12] J. Blicharski, Analytical modeling of the gas storage process in depleted natural gas reservoirs – selected aspects, The AGH University of Science and Technology Press, Krakow (2018).
  • [13] L.P. Dake, The Practice of Reservoir Engineering, revised ed.; Elsevier Science Publishers, Amsterdam (2001).
  • [14] T. Ahmed, P. McKinney, Advanced Reservoir Engineering, 1st ed., Gulf Professional Publishing (2005).
  • [15] M.J. Fetkovich, A simplified Approach to Water Influx Calculations-Finite Aquifer Systems. J. Petrol. Technol. 23 (07), 814-828 (1971). DOI: https://doi.org/10.2118/2603-PA.
  • [16] A.F. Van Everdingen, W. Hurst, The application of the Laplace transformation to flow problems in reservoirs. J. Petrol. Technol. 1 (12), 305-324 (1949). DOI: https://doi.org/10.2118/949305-G.
  • [17] I.S. Nashawi, A. Elkamel, Neural network model for the prediction of water aquifer dimensionless variables for edge-and bottom-water drive reservoirs. Energy and Fuel 13 (1), 88-98 (1999). DOI: https://doi.org/10.1021/ef980128q.
  • [18] https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html, accessed: 12.07.2020.
  • [19] http://www.applied-mathematics.net/LMvsTR/LMvsTR.pdf, accessed: 11.11.2019.
  • [20] http://www1.lsbu.ac.uk/water/physical_anomalies.html, accessed: 08.06.2020.
  • [21] A.Y. Dandekar, Petroleum Reservoir Rock and Fluid Properties, 2nd ed., CRC Press, Boca Raton, United States (2013). DOI: https://doi.org/10.1201/b15255.
  • [22] http://www.fekete.com/SAN/WebHelp/FeketeHarmony/Harmony_WebHelp/Content/HTML_Files/Reference_Ma terial/General_Concepts/Reservoir_Fluid_Properties.htm, accessed 18.11.2019.
  • [23] W.D. Jr. McCain, The Properties of Petroleum Fluids, 2nd ed.; PennWell Books, Tulsa, United States (1990).
  • [24] D. Havlena, A.S. Odeh, The Material Balance as an Equation of a Straight Line. J. Petrol. Technol. 15 (08), 896-900 (1963). DOI: https://doi.org/10.2118/559-PA.
  • [25] D. Havlena, A.S. Odeh, The Material Balance as an Equation of a Straight Line. Part II – Field Cases. J. Petrol. Technol. 16 (07), 815-822 (1964). DOI: https://doi.org/10.2118/869-PA.
  • [26] L. Clarke, R.J. Davies, J. van Hunen, S.E. Daniels, G. Yielding, Application of material balance methods to CO2 storage capacity estimation within selected depleted gas reservoirs. Petroleum Geoscience 23 (3), 339-352 (2017). DOI: https://doi.org/10.1144/petgeo2016-052.
  • [27] A. Satter, G.M. Iqbal, J.L. Buchwalter, Practical Enhanced Reservoir Engineering: Assisted With Simulation Software. PennWell Books, Tulsa, (2008).
  • [28] C. Rybicki; J. Blicharski, Water movement problems in the process of gas production and underground gas storage. AGH Drilling, Oil, Gas 24 (1), 435-441 (2007).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af3583ba-b0dc-405d-a9a4-c12321c38cec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.