Identyfikatory
Warianty tytułu
Validation for the possibility of use the lithium-sulfur battery to start combustion engine
Języki publikacji
Abstrakty
W artykule omówiony został problem zastosowania akumulatora litowo-siarkowych do rozruchu silnika spalinowego stosowanego w samochodzie osobowym. Dokonano przeglądu istniejących rozwiązań elektrod wykorzystywanych w tego typu akumulatorach. Przedstawiono budowę i działanie ogniwa litowo-siarkowego. Przedstawiono model matematyczny obciążenia akumulatora i wyniki obliczeń. W podsumowaniu zamieszczono uwagi, co do możliwości zastosowania tego typu akumulatorów do uruchamiania samochodowych silników spalinowych.
Paper discussed the problem of the use the lithium-sulfur battery to start the combustion engine used in the car. A review of existing solutions for electrodes used in this type of battery was made. It was shown the design and operation of a lithium-sulfur battery. A mathematical model for the battery loading and calculation results were presented. The summary contains comments for the applicability of this type of battery to start automobile engines.
Rocznik
Tom
Strony
1346--1350
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., pełen tekst na CD
Twórcy
autor
- Politechnika Łódzka
autor
- Politechnika Łódzka
Bibliografia
- 1. Barghamadi, M., Kapoor, A., Wen, C., A review on Li-S batteries as a high efficiency rechargeable lithium battery, Journal of the Electrochemical Society, vol. 160, no. 8, pp. A1256-A1263.
- 2. Moore, Wm., (2004), Sion Introduces a Lithium Sulfur Rechargeable Battery, EV World.
- 3. Guangyuan Zheng, Yuan Yang, Judy J. Cha, Seung Sae Hong, Yi Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. „Nano Lett.”. 11 (10), pp. 4462–4467, 2011. doi: 10.1021/nl2027684.
- 4. Akridge, J. R., (October 2001), Lithium Sulfur Re-chargeable Battery Safety, Battery Power Products & Technology.
- 5. Young-Jin Choi, Ki-Won Kim, Hyo-Jun Ahn, Jou-Hyeon Ahn, Improvement of cycle property of sulfur electrode for lithium/sulfur battery, Journal of Alloys and Compounds. 449 (1– 2), pp. 313–316, 2008. doi: 10.1016/j.jallcom.2006.02.098.
- 6. Dean, J. A., Lange's Handbook of Chemistry. Wyd. trzecie. McGraw-Hill, 1985.
- 7. Young-Jin Choi, Young-Dong Chung, Chang-Yong Baek, Ki Won Kim, Hyo-Jun Ahn, Jou-Hyeon Ahn, Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell, Journal of Power Sources. 184 (2), pp. 548– 552, 2008, doi: 10.1016/j.jpowsour.2008.02.053.
- 8. Islam, M. M., Ostadhossein, A., Borodin, O., Yeates, A. T., Tipton, W. W., Hennig, R. G., Kumar, N., van Duin, A. C. T., ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials, Phys. Chem. Chem. Phys. 17 (5): 3383–3393, 2015, doi:10.1039/c4cp04532g.
- 9. Brian Dodson, New lithium/sulfur battery doubles energy density of lithium-ion, gizmag, 1 December 2013.
- 10. Ji, X., Lee, K. T., Nazar, L. F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat Mater. 8 (6), s. 500-506, 2009, doi: 10.1038/nmat2460.
- 11. Zheng, G., Yang, Y., Cha, J. J., Hong, S. S., Cui, Y., (14 September 2011), Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries, Nano Letters: 4462–4467, doi:10.1021/nl2027684.
- 12. Keller, S. J., (October 4, 2011), Sulfur in hollow nanofibers overcomes challenges of lithium-ion battery design, Stanford News. Stanford University.
- 13. Rosenberg, S., Hintennach, A., (1 April 2014), Laser-printed lithium-sulphur micro-electrodes for Li/S batteries, Russian Journal of Electrochemistry, Volume 50, Issue 4, pp. 327–335.
- 14. Vandenberg, A., Hintennach, A., (1 April 2014), A novel design approach for lithium-sulphur batteries, Russian Journal of Electrochemistry, Volume 50, Issue 4, pp. 317–326.
- 15. Williams, A., Researchers increase lifespan of lithium-sulfur batteries, gizmag.com. 04.04.2013.
- 16. Chung, W. J., Griebel, J. J., Kim, E. T., Yoon, H., Simmonds, A. G., Ji, H. J., Dirlam, P. T., Glass, R. S., Wie, J. J., Nguyen, N. A., Guralnick, B. W., Park, J., Somogyi, Á. D., Theato, P., MacKay, M. E., Sung, Y. E., Char, K., Pyun, J., (2013), The use of elemental sulfur as an alternative feedstock for polymeric materials, Nature Chemistry. 5 (6): 518–524, doi:10.1038/nchem.1624.
- 17. SLAC National Accelerator Laboratory, (2013-01-08), WorldRecord Battery Performance Achieved With Egg-Like Nanostructures". CleanTechnica.
- 18. Wei Seh, Z., Li, W., Cha, J. J., Zheng, G., Yang, Y., McDowell, M. T., Hsu, P. C., Cui, Y., (2013), Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries, Nature Communications. 4: 1331, doi:10.1038/ncomms2327.
- 19. Lin, Z., Liu, Z., Fu, W., Dudney, N. J., Liang, C, (2013), Lithium Polysulfidophosphates: A Family of Lithium-Conducting SulfurRich Compounds for Lithium-Sulfur Batteries, Angewandte Chemie International Edition, doi:10.1002/anie.201300680.
- 20. Borghino, D.: All-solid lithium-sulfur battery stores four times the energy of lithium-ions. Gizmag.com. 2013-06-13.
- 21. Zhan Lin, Zengcai Liu, Wujun Fu, Nancy J. Dudney, Chengdu Liang, Lithium Polysulfidophosphates: A Family of LithiumConducting Sulfur-Rich Compounds for Lithium–Sulfur Batteries, 2013, Angewandte Chemie International Edition - Wiley Online Library, wiley.com.
- 22. Dodson, B., New lithium/sulfur battery doubles energy density of lithium-ion, gizmag.com. 2013-12-04.
- 23. Lavars, N., (February 20, 2014), Hybrid anode quadruples the lifespan of lithium-sulfur batteries, gizmag. February 21st, 2014.
- 24. Battery technology. A whiff of brimstone, Economist. January 3, 2015.
- 25. Li-S battery company OXIS Energy reports 300 Wh/kg and 25 Ah cell, predicting 33 Ah by mid-2015, 500 Wh/kg by end of 2018, Green Car Congress, November 12, 2014.
- 26. Yuan, Zhe, Peng, Hong-Jie, Huang, Jia-Qi, Liu, Xin-Yan, Wang, Dai-Wei, Cheng, Xin-Bing, Zhang, Qiang, (2014-10-01), Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium–Sulfur Batteries, Advanced Functional Materials. 24 (39): 6105–6112. doi:10.1002/adfm.201401501.
- 27. Qie, L., Manthiram, A., High-Energy-Density Lithium−Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes, ACSEnergyLett. 2016, 1, 46−51, doi:10.1021/acsenergylett.6b00033.
- 28. Nealon, S., (2015-03-03), Glass coating for improved battery performance, R&D.
- 29. Nealon, S., (March 2, 2015), Glass coating improves battery performance, phys.org.
- 30. Dysart, A. D., Burgos, J. C., Mistry, A., Chen, C-F., Liu, Z., Hong, C.N., Balbuena, P.B., Mukherjee, P.P., Pol, V.G., Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis, J. Electrochem. Soc. 2016 volume 163, issue 5, A730-A741, doi: 10.1149/2.0481605jes.
- 31. Tudron, F. B., Akridge, J. R., Puglisi, V. J.: Lithium-Sulfur Rechargeable Batteries: Characteristics, State of Development, and Applicability to Powering Portable Electronics, Sion Power Corporation, 2004.
- 32. Jeong, S. S., Lim, Y. T., Choi, Y. J., Cho, G. B., Kim, K. W., Ahn, H. J., Cho, K. K., Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions, Journal of Power Sources. 174 (2), pp. 745–750, 2007, doi: 10.1016/j.jpowsour.2007.06.108.
- 33. http://www.sionpower.com/pdf/articles/SionPowerECS.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af31ff46-2176-4c04-913f-9097fddc825f