PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ocena możliwości wykorzystania akumulatora litowo–siarkowego do rozruchu silnika spalinowego

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Validation for the possibility of use the lithium-sulfur battery to start combustion engine
Języki publikacji
PL
Abstrakty
PL
W artykule omówiony został problem zastosowania akumulatora litowo-siarkowych do rozruchu silnika spalinowego stosowanego w samochodzie osobowym. Dokonano przeglądu istniejących rozwiązań elektrod wykorzystywanych w tego typu akumulatorach. Przedstawiono budowę i działanie ogniwa litowo-siarkowego. Przedstawiono model matematyczny obciążenia akumulatora i wyniki obliczeń. W podsumowaniu zamieszczono uwagi, co do możliwości zastosowania tego typu akumulatorów do uruchamiania samochodowych silników spalinowych.
EN
Paper discussed the problem of the use the lithium-sulfur battery to start the combustion engine used in the car. A review of existing solutions for electrodes used in this type of battery was made. It was shown the design and operation of a lithium-sulfur battery. A mathematical model for the battery loading and calculation results were presented. The summary contains comments for the applicability of this type of battery to start automobile engines.
Rocznik
Strony
1346--1350
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., pełen tekst na CD
Twórcy
autor
  • Politechnika Łódzka
autor
  • Politechnika Łódzka
Bibliografia
  • 1. Barghamadi, M., Kapoor, A., Wen, C., A review on Li-S batteries as a high efficiency rechargeable lithium battery, Journal of the Electrochemical Society, vol. 160, no. 8, pp. A1256-A1263.
  • 2. Moore, Wm., (2004), Sion Introduces a Lithium Sulfur Rechargeable Battery, EV World.
  • 3. Guangyuan Zheng, Yuan Yang, Judy J. Cha, Seung Sae Hong, Yi Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries. „Nano Lett.”. 11 (10), pp. 4462–4467, 2011. doi: 10.1021/nl2027684.
  • 4. Akridge, J. R., (October 2001), Lithium Sulfur Re-chargeable Battery Safety, Battery Power Products & Technology.
  • 5. Young-Jin Choi, Ki-Won Kim, Hyo-Jun Ahn, Jou-Hyeon Ahn, Improvement of cycle property of sulfur electrode for lithium/sulfur battery, Journal of Alloys and Compounds. 449 (1– 2), pp. 313–316, 2008. doi: 10.1016/j.jallcom.2006.02.098.
  • 6. Dean, J. A., Lange's Handbook of Chemistry. Wyd. trzecie. McGraw-Hill, 1985.
  • 7. Young-Jin Choi, Young-Dong Chung, Chang-Yong Baek, Ki Won Kim, Hyo-Jun Ahn, Jou-Hyeon Ahn, Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell, Journal of Power Sources. 184 (2), pp. 548– 552, 2008, doi: 10.1016/j.jpowsour.2008.02.053.
  • 8. Islam, M. M., Ostadhossein, A., Borodin, O., Yeates, A. T., Tipton, W. W., Hennig, R. G., Kumar, N., van Duin, A. C. T., ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials, Phys. Chem. Chem. Phys. 17 (5): 3383–3393, 2015, doi:10.1039/c4cp04532g.
  • 9. Brian Dodson, New lithium/sulfur battery doubles energy density of lithium-ion, gizmag, 1 December 2013.
  • 10. Ji, X., Lee, K. T., Nazar, L. F., A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat Mater. 8 (6), s. 500-506, 2009, doi: 10.1038/nmat2460.
  • 11. Zheng, G., Yang, Y., Cha, J. J., Hong, S. S., Cui, Y., (14 September 2011), Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries, Nano Letters: 4462–4467, doi:10.1021/nl2027684.
  • 12. Keller, S. J., (October 4, 2011), Sulfur in hollow nanofibers overcomes challenges of lithium-ion battery design, Stanford News. Stanford University.
  • 13. Rosenberg, S., Hintennach, A., (1 April 2014), Laser-printed lithium-sulphur micro-electrodes for Li/S batteries, Russian Journal of Electrochemistry, Volume 50, Issue 4, pp. 327–335.
  • 14. Vandenberg, A., Hintennach, A., (1 April 2014), A novel design approach for lithium-sulphur batteries, Russian Journal of Electrochemistry, Volume 50, Issue 4, pp. 317–326.
  • 15. Williams, A., Researchers increase lifespan of lithium-sulfur batteries, gizmag.com. 04.04.2013.
  • 16. Chung, W. J., Griebel, J. J., Kim, E. T., Yoon, H., Simmonds, A. G., Ji, H. J., Dirlam, P. T., Glass, R. S., Wie, J. J., Nguyen, N. A., Guralnick, B. W., Park, J., Somogyi, Á. D., Theato, P., MacKay, M. E., Sung, Y. E., Char, K., Pyun, J., (2013), The use of elemental sulfur as an alternative feedstock for polymeric materials, Nature Chemistry. 5 (6): 518–524, doi:10.1038/nchem.1624.
  • 17. SLAC National Accelerator Laboratory, (2013-01-08), WorldRecord Battery Performance Achieved With Egg-Like Nanostructures". CleanTechnica.
  • 18. Wei Seh, Z., Li, W., Cha, J. J., Zheng, G., Yang, Y., McDowell, M. T., Hsu, P. C., Cui, Y., (2013), Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries, Nature Communications. 4: 1331, doi:10.1038/ncomms2327.
  • 19. Lin, Z., Liu, Z., Fu, W., Dudney, N. J., Liang, C, (2013), Lithium Polysulfidophosphates: A Family of Lithium-Conducting SulfurRich Compounds for Lithium-Sulfur Batteries, Angewandte Chemie International Edition, doi:10.1002/anie.201300680.
  • 20. Borghino, D.: All-solid lithium-sulfur battery stores four times the energy of lithium-ions. Gizmag.com. 2013-06-13.
  • 21. Zhan Lin, Zengcai Liu, Wujun Fu, Nancy J. Dudney, Chengdu Liang, Lithium Polysulfidophosphates: A Family of LithiumConducting Sulfur-Rich Compounds for Lithium–Sulfur Batteries, 2013, Angewandte Chemie International Edition - Wiley Online Library, wiley.com.
  • 22. Dodson, B., New lithium/sulfur battery doubles energy density of lithium-ion, gizmag.com. 2013-12-04.
  • 23. Lavars, N., (February 20, 2014), Hybrid anode quadruples the lifespan of lithium-sulfur batteries, gizmag. February 21st, 2014.
  • 24. Battery technology. A whiff of brimstone, Economist. January 3, 2015.
  • 25. Li-S battery company OXIS Energy reports 300 Wh/kg and 25 Ah cell, predicting 33 Ah by mid-2015, 500 Wh/kg by end of 2018, Green Car Congress, November 12, 2014.
  • 26. Yuan, Zhe, Peng, Hong-Jie, Huang, Jia-Qi, Liu, Xin-Yan, Wang, Dai-Wei, Cheng, Xin-Bing, Zhang, Qiang, (2014-10-01), Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium–Sulfur Batteries, Advanced Functional Materials. 24 (39): 6105–6112. doi:10.1002/adfm.201401501.
  • 27. Qie, L., Manthiram, A., High-Energy-Density Lithium−Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes, ACSEnergyLett. 2016, 1, 46−51, doi:10.1021/acsenergylett.6b00033.
  • 28. Nealon, S., (2015-03-03), Glass coating for improved battery performance, R&D.
  • 29. Nealon, S., (March 2, 2015), Glass coating improves battery performance, phys.org.
  • 30. Dysart, A. D., Burgos, J. C., Mistry, A., Chen, C-F., Liu, Z., Hong, C.N., Balbuena, P.B., Mukherjee, P.P., Pol, V.G., Towards Next Generation Lithium-Sulfur Batteries: Non-Conventional Carbon Compartments/Sulfur Electrodes and Multi-Scale Analysis, J. Electrochem. Soc. 2016 volume 163, issue 5, A730-A741, doi: 10.1149/2.0481605jes.
  • 31. Tudron, F. B., Akridge, J. R., Puglisi, V. J.: Lithium-Sulfur Rechargeable Batteries: Characteristics, State of Development, and Applicability to Powering Portable Electronics, Sion Power Corporation, 2004.
  • 32. Jeong, S. S., Lim, Y. T., Choi, Y. J., Cho, G. B., Kim, K. W., Ahn, H. J., Cho, K. K., Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions, Journal of Power Sources. 174 (2), pp. 745–750, 2007, doi: 10.1016/j.jpowsour.2007.06.108.
  • 33. http://www.sionpower.com/pdf/articles/SionPowerECS.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af31ff46-2176-4c04-913f-9097fddc825f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.