PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bismuth Oxide Nanoparticles Influence on ROS generation by Targeted and Bystander Cells under Proton Beam Irradiation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: The goals of radiotherapy to achieve a therapeutic dose for the cancer cells and lower the dose for the surrounding healthy tissues might be possible with highly localized proton beam therapy. The lethal effects can further be increased by using nanomaterials as a radiosensitizer. Material and methods: In this study, the effects of bismuth oxide nanoparticles (BiONPs) in combination with a proton beam on the targeted and bystander cells were investigated by measuring the level of reactive oxygen species (ROS) generated. Human colon carcinoma cells (HCT 116) were incubated with 0.5 mM of BiONPs and then were exposed to 150 MeV proton beams with doses of 2 to 12 Gy at the dose rate of 0.1 Gy/s in a single fraction. ROS was measured for targeted cells after irradiation, and the effect on the bystander cells was measured using irradiated cell-conditioned medium (ICCM) with and without BiONPs. Results: The results show an increase in the ROS generation for irradiated cells treated with BiONPs. Meanwhile in bystander cells, the results indicated the increment in the ROS generation for cells with BiONPs ICCM compared to those with ICCM only. Nevertheless, the population means difference in ROS levels among bystander cells at different incubation times is insignificant (p<0.05). The bystander cells treated with ICCM @ 12 Gy also did not significantly differ from unirradiated cells with BiONPs ICCM @ 0 Gy (p<0.05). Conclusion: The application of BiONPs as a radiosensitizer in combination with proton beam therapy could improve tumor control with minimal risk of normal tissue complication.
Rocznik
Strony
164--170
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia, Selangor, Malaysia
  • Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
  • School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  • School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia
autor
  • School of Health and Biomedical Sciences, RMIT University, Victoria, Australia
  • Graduate School of Medicine, Kobe University, Kobe, Japan
  • Graduate School of Medicine, Kobe University, Kobe, Japan
  • Faculty of Health Sciences, Hiroshima International University, Hiroshima, Japan
  • Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
  • Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
autor
  • Hyogo Ion Beam Medical Centre (HIBMC), Hyogo, Japan
Bibliografia
  • 1. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW. Biological response of cancer cells to radiation treatment. Front Mol Biosci. 2014;1. doi:10.3389/fmolb.2014.00024
  • 2. Goel S, Ni D, Cai W. Harnessing the power of nanotechnology for enhanced radiation therapy. ACS Nano. 2017;11(6):5233-5237. doi:10.1021/acsnano.7b03675
  • 3. Liu Y, Zhang P, Li F, et al. Metal-based NanoEnhancers for future radiotherapy: Radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;8(7):1824-1849. doi:10.7150/thno.22172
  • 4. Song K, Xu P, Meng Y, et al. Smart gold nanoparticles enhance killing effect on cancer cells. Int J Oncol. 2013;42(2):597-608. doi:10.3892/ijo.2012.1721
  • 5. Afiq M, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman WN. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem Oxf Engl 1993. 2018;150:40-45. doi:10.1016/j.radphyschem.2018.04.018
  • 6. Lazim, R.M., Rashid, R.A., Pham, B.T., Hawkett, B.S., Geso, M. and Rahman, W.N. Radiation dose enhancement effects of superparamagnetic iron oxide nanoparticles to the T24 bladder cancer cell lines irradiated with megavoltage photon beam radiotheray. J Sains Nukl Malaysia. 2018; 30(2), pp.30-38.
  • 7. Rashid RA, Razak KA, Geso M, Abdullah R, Dollah N, Rahman WN. Radiobiological characterization of the radiosensitization effects by gold nanoparticles for megavoltage clinical radiotherapy beams. Bionanoscience. 2018;8(3):713-722. doi:10.1007/s12668-018-0524-5
  • 8. Shahbazi MA, Faghfouri L, Ferreira MPA, et al. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev. 2020;49(4):1253-1321. doi:10.1039/c9cs00283a
  • 9. Stewart C, Konstantinov K, McKinnon S, et al. First proof of bismuth oxide nanoparticles as efficient radiosensitisers on highly radioresistant cancer cells. Phys Med. 2016;32(11):1444-1452. doi:10.1016/j.ejmp.2016.10.015
  • 10. Deng J, Xu S, Hu W, Xun X, Zheng L, Su M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials. 2018;154:24-33. doi:10.1016/j.biomaterials.2017.10.048
  • 11. Rajaee A, Wang S, Zhao L. Bismuth-based nanoparticles as radiosensitizer in low and high dose rate brachytherapy. Pol J Med Phys Eng. 2019;25(2):79-85. doi:10.2478/pjmpe-2019-0011
  • 12. Alqathami, M., Blencowe, A., Yeo, U.J., Franich, R., Doran, S., Qiao, G. and Geso, M. Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: A dosimetric study using a novel multi-compartment 3D radiochromic dosimeter. In Journal of Physics: Conference Series. 2013;(Vol. 444, No. 1, p. 012025). IOP Publishing. doi: 10.1088/1742-6596/444/1/012025
  • 13. Sisin, N.N.T., Abidin, S.Z., Yunus, M.A., Zin, H.M., Razak, K.A. and Rahman, W.N. Evaluation of bismuth oxide nanoparticles as radiosensitizer for megavoltage radiotherapy. Int J Adv Sci Eng Inf Technol, 2019;9(4), pp.1434-1443.
  • 14. Sisin, N.N.T., Azam, N.A., Rashid, R.A., Abdullah, R., Razak, K.A., Abidin, S.Z. and Rahman, W.N., 2020, March. Dose enhancement by bismuth oxide nanoparticles for HDR brachytherapy. In Journal of Physics: Conference Series. 2020;(Vol. 1497, No. 1, p. 012002). IOP Publishing. doi: 10.1088/1742-6596/1497/1/012002
  • 15. Mohd Zainudin NH, Razak KA, Abidin SZ, Abdullah R, Rahman WN. Influence of bismuth oxide nanoparticles on bystander effects in MCF-7 and hFOB 1.19 cells under 10 MV photon beam irradiation. Radiat Phys Chem Oxf Engl 1993. 2020;177(109143):109143. doi:10.1016/j.radphyschem.2020.109143
  • 16. Marín, A., Martín, M., Liñán, O., Alvarenga, F., López, M., Fernández, L., Büchser, D. and Cerezo, L., 2015. Bystander effects and radiotherapy. Reports of practical oncology and radiotherapy. 2015;20(1), pp.12-21. doi: 10.1016/j.rpor.2014.08.004
  • 17. Heuskin AC, Wéra AC, Riquier H, Michiels C, Lucas S. Low-dose hypersensitivity and bystander effect are not mutually exclusive in A549 lung carcinoma cells after irradiation with charged particles. Radiat Res. 2013;180(5):491-498. doi:10.1667/rr13358.1
  • 18. Verma N, Tiku AB. Significance and nature of bystander responses induced by various agents. Mutat Res Rev Mutat Res. 2017;773:104-121. doi:10.1016/j.mrrev.2017.05.003
  • 19. Temelie M, Stroe D, Petcu I, Mustaciosu C, Moisoi N, Savu D. Bystander effects and compartmental stress response to X-ray irradiation in L929 cells. Radiat Environ Biophys. 2016;55(3):371-379. doi:10.1007/s00411-016-0649-2
  • 20. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 2015;8(2):247-254. doi:10.1016/j.jrras.2015.03.003
  • 21. Mladenov E, Li F, Zhang L, Klammer H, Iliakis G. Intercellular communication of DNA damage and oxidative status underpin bystander effects. Int J Radiat Biol. 2018;94(8):719-726. doi:10.1080/09553002.2018.1434323
  • 22. Li J, He M, Shen B, Yuan D, Shao C. Alpha particle-induced bystander effect is mediated by ROS via a p53-dependent SCO2 pathway in hepatoma cells. Int J Radiat Biol. 2013;89(12):1028-1034. doi:10.3109/09553002.2013.817706
  • 23. Saran M, Bors W. Signalling by O2−• and NO•: how far can either radical, or any specific reaction product, transmit a message under in vivo conditions? Chem Biol Interact. 1994;90(1):35-45. doi:10.1016/0009-2797(94)90109-0
  • 24. Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol. 2011;7(8):504-511. doi:10.1038/nchembio.607
  • 25. Sawal, H.A., Asghar, K., Bureik, M. and Jalal, N. Bystander signaling via oxidative metabolism. OncoTargets and therapy. 2017;pp.3925-3940. doi.org/10.2147/OTT.S136076
  • 26. Zulkifli, Z.A., Razak, K.A., Rahman, W.N.W.A. and Abidin, S.Z., 2018, August. Synthesis and characterisation of bismuth oxide nanoparticles using hydrothermal method: the effect of reactant concentrations and application in radiotherapy. In Journal of Physics: Conference Series. 2018;(Vol. 1082, p. 012103). IOP Publishing. doi:10.1088/1742-6596/1082/1/012103
  • 27. Zulkifli ZA, Razak KA, Rahman WNWA. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method. In: AIP Conference Proceedings. Vol 1963. Author(s); 2018:020007. https://doi.org/10.1063/1.5034538.
  • 28. Nh, M.Z., Abdullah, R. and Rahman, W.N. Bystander effect induced in breast cancer (MCF-7) and human osteoblast cell lines (hFOB 1.19) with HDR-brachytherapy. Journal of Biomedical Physics & Engineering. 2020;10(3), p.319. doi: 10.31661/jbpe.v0i0.1135
  • 29. Zainudin, N.H.M., Ab Rashid, R., Abdullah, R. and Abd Rahman, W.N.W. RADIATION-INDUCED BYSTANDER EFFECTS (RIBE) IN DBTRG-05MG HUMAN GLIOBLASTOMA CELLS. Jurnal Sains Nuklear Malaysia. 2019;31(1), pp.67-74.
  • 30. Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano. 2019;4(100027):100027. doi:10.1016/j.onano.2018.100027
  • 31. Anuar, M.A.K. and Rahman, W.N.W.N. Effect of Nanoparticle Size on Radiosensitization Effect and ROS Generation in Human Colon Carcinoma Cells (HCT 116) After 150 MeV Proton Beam Irradiation. Journal of Nuclear and Related Technologies. 2021;pp.17-25.
  • 32. Desai S, Kumar A, Laskar S, Pandey BN. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells. Cytokine. 2013;61(1):54-62. doi:10.1016/j.cyto.2012.08.022
  • 33. Li XF, Zhu GY, Wang JP, Wang YU. Inhibitory effects of autologous γ-irradiated cell conditioned medium on osteoblasts in vitro. Mol Med Rep. 2015;12(1):273-280. doi:10.3892/mmr.2015.3354
  • 34. Wang X, Zhang J, Fu J, et al. Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells. Int J Radiat Biol. 2015;91(5):452-458. doi:10.3109/09553002.2015.1012308
  • 35. Jella KK, Moriarty R, McClean B, Byrne HJ, Lyng FM. Reactive oxygen species and nitric oxide signaling in bystander cells. PLoS One. 2018;13(4):e0195371. doi:10.1371/journal.pone.0195371
  • 36. Kozak J, Jonak K, Maciejewski R. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed Pharmacother. 2020;125(110037):110037. doi:10.1016/j.biopha.2020.110037
  • 37. Alamzadeh Z, Beik J, Mirrahimi M, et al. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci. 2020;145(105235):105235. doi:10.1016/j.ejps.2020.105235
  • 38. Choi, J., Jung, K.O., Graves, E.E. and Pratx, G. A gold nanoparticle system for the enhancement of radiotherapy and simultaneous monitoring of reactive-oxygen-species formation. Nanotechnology. 2018;29(50), p.504001. doi:10.1088/1361-6528/aae272
  • 39. Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun. 2012;425(2):393-397. doi:10.1016/j.bbrc.2012.07.108
  • 40. Talik Sisin, N.N., Abdul Razak, K., Zainal Abidin, S., Che Mat, N.F., Abdullah, R., Ab Rashid, R., Khairil Anuar, M.A. and Rahman, W.N. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. International Journal of Nanomedicine, 2020;pp.7805-7823. doi.org/10.2147/IJN.S269214
  • 41. Smith CL, Ackerly T, Best SP, et al. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiat Meas. 2015;82:122-128. doi:10.1016/j.radmeas.2015.09.008
  • 42. Peukert D, Kempson I, Douglass M, Bezak E. Gold nanoparticle enhanced proton therapy: Monte Carlo modeling of reactive species’ distributions around a gold nanoparticle and the effects of nanoparticle proximity and clustering. Int J Mol Sci. 2019;20(17):4280. doi:10.3390/ijms20174280
  • 43. Seo SJ, Han SM, Cho JH, et al. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core–inner-shell excitation by proton or monochromatic X-ray irradiation: implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiat Environ Biophys. 2015;54(4):423-431. doi:10.1007/s00411-015-0612-7
  • 44. Rezaei, M., Samani, R.K., Kazemi, M., Shanei, A. and Hejazi, S.H. Induction of a bystander effect after therapeutic ultrasound exposure in human melanoma: In-vitro assay. International Journal of Radiation Research. 2021;19(1), pp.183-189. doi:10.29252/ijrr.19.1.183
  • 45. Rostami A, Toossi MTB, Sazgarnia A, Soleymanifard S. The effect of glucose-coated gold nanoparticles on radiation bystander effect induced in MCF-7 and QUDB cell lines. Radiat Environ Biophys. 2016;55(4):461-466. doi:10.1007/s00411-016-0669-y
  • 46. Sarani M, Roostaee M, Adeli-Sardou M, Kalantar-Neyestanaki D, Mousavi SA, Amanizadeh A, Barani M, Amirbeigi A. Green synthesis of Ag and Cu-doped Bismuth oxide nanoparticles: revealing synergistic antimicrobial and selective cytotoxic potentials for biomedical advancements. Journal of Trace Elements in Medicine and Biology. 2024 Jan 1;81:127325.
  • 47. Yuan P, Hu X, Zhou Q. The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology. 2020;14(8):1137-1155. doi:10.1080/17435390.2020.1817598
  • 48. Zhou R, Liu X, Wu Y, et al. Suppressing the radiation-induced corrosion of bismuth nanoparticles for enhanced synergistic cancer radiophototherapy. ACS Nano. 2020;14(10):13016-13029. doi:10.1021/acsnano.0c04375
  • 49. Tang JY, Shu CW, Wang CL, et al. Sulfonyl chromen-4-ones (CHW09) shows an additive effect to inhibit cell growth of X-ray irradiated oral cancer cells, involving apoptosis and ROS generation. Int J Radiat Biol. 2019;95(9):1226-1235. doi:10.1080/09553002.2019.1625490
  • 50. Liao EC, Hsu YT, Chuah QY, et al. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 2014;5(5):e1255-e1255. doi:10.1038/cddis.2014.220
  • 51. Fardid R, Eftekhari-Kenzerki Z, Behzad-Behbahani A. Impact of silver nanoparticles on the ultraviolet radiation direct and bystander effects on TK6 cell line. J Med Phys. 2019;44(2):118. doi:10.4103/jmp.jmp_111_18
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af314f32-7fc5-44fc-ba4f-b1e834b8a47c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.