PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diode Laser Surface Alloying of Armor Steel with Tungsten Carbide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal matrix composite (MMC) surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction. The surface layers having the WC fraction up to 71 vol% and an average hardness of 1300 HV were produced. The thickness of these layers was up to 650 μm. The addition of a titanium powder in the molten pool increased the wettability of WC particles by the liquid metal in the molten pool increasing the WC fraction. Additionally, the presence of titanium resulted in the precipitation of the (Ti,W)C phase, which significantly reduced the fraction of W-rich complex carbides and improved a structural integrity of the layers.
Twórcy
autor
  • The Silesian University of Technology, Faculty of Mechanical Engineering, Welding Department, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • The Silesian University of Technology, Faculty of Mechanical Engineering, Welding Department, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • The Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • The Silesian University of Technology, Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • The Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • The Silesian University of Technology, Faculty of Mechanical Engineering, Welding Department, 18a Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] M. K. Aghajanian, A. L. McCormick, A. L. Marshall, W. M. Waggoner, P. K. Karandikar, in: J. J. Swab (Ed.), Advances in Ceramic Armor VI, A John Wiley & Sons, Inc., New Jersey 2010.
  • [2] H. Chang, J. Binner, R. Higginson, in: J.J. Swab (Ed.), Advances in Ceramic Armor VI, A John Wiley & Sons, Inc., New Jersey 2010.
  • [3] M. Garcia-Avila, M. Portanova, A. Rabiei, Procedia Materials Science 4, 151-156 (2014).
  • [4] T. Borvik, S. Dey, A. H. Clausen, Int. J. of Impact Eng. 36, 948-964 (2009).
  • [5] I. Barényi, O. Híreš, P. Lip, Problems of Mechatronics Armament, Aviation, Safety Eng. 14, 7-14 (2013).
  • [6] D. Janicki, Arch. Metall. Mater. 59 (4), 1641-1646 (2014).
  • [7] K. Labisz, T. Tański, M. Kremzer, D. Janicki, Int. J. Mater. Res. 108 (2),126-132 (2017).
  • [8] D. Wojnowski, Y.K. Oh, J.E. Indacochea, J. Manuf. Sci. Eng. 122 (2), 310-315 (2000).
  • [9] G. Madhusudhan Reddy, T. Mohandas, K.K. Papukutty, J. Mater. Process. Tech. 74, 27-35 (1998).
  • [10] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tański, Int. J. Mater. Prod. Tec. 51 (3), 264-280 (2015).
  • [11] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, J. Mater. Process. Tech. 164, 1046-1055 (2005).
  • [12] T. Liyanage, G. Fisher, A.P. Gerlich, Wear 274-275, 345-354 (2012).
  • [13] M. Musztyfaga-Staszuk, L.A. Dobrzański, Cent. Eur. J. Phys. 12 (12), 836-842 (2014).
  • [14] A. Lisiecki, Metals 5, 54-69 (2015).
  • [15] D. Janicki, M. Musztyfaga-Staszuk, Stroj. Vestn-J. Mech. E. 62 (6), 363-372 (2016).
  • [16] R. Ahmed, H. Yu, V. Stoica, L. Edwards, J.R. Sentisteban, Mat. Sci. Eng. A 498, 191-202 (2008).
  • [17] D.V. Suetin, I.R. Shein, A.L. Ivanovskii, Physica B 404 (20), 3544-3549 (2009).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af2ddf31-aa91-476a-8922-2811ca040ae0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.