PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study and Analysis of Flow Regime Transitions in Straight Channels Using the Lattice Boltzmann Method for Shallow Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work is to examine the unexplored dynamics of flow regime changes in linear channels, with a specific emphasis on the impact of relaxation time, channel width, and external forces on the shift from laminar to turbulent flow. This study intends to improve understanding of how the parameters associated with the Lattice Boltzmann model for shallow water equations (LABSWE) can be modified to change flow regimes using a D2Q9 approach for domain discretization. Our investigations demonstrate that a decrease in relaxation time prompts a shift from a parabolic (laminar) to a logarithmic (turbulent) velocity distribution, evidenced by significant fluctuations in the central channel velocity and an increase in the Reynolds number. This study also reveals that broader channel widths lead to turbulent flow, marking a notable departure from the laminar flow observed in narrower settings. The application of external forces further intensifies this transition, showcasing their pivotal role in influencing flow regimes. This study presents significant scientific novelty by offering new insights into the conditions that foster flow regime transitions, thereby addressing a gap in the current fluid mechanics literature. Our findings suggest practical ways to manipulate these factors to optimize flow behaviors, providing valuable insights for the engineering and environmental management of water systems.
Twórcy
  • LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P. 145, Khouribga 25000, Morocco
  • LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P. 145, Khouribga 25000, Morocco
  • LS2ME Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P. 145, Khouribga 25000, Morocco
Bibliografia
  • 1. Bazilevs Y.H., Kiendl M., Wüchner J., Rand Bletzinger K. 2008. Numerical Modeling of Turbulent Compound Channel Flow Using the Lattice Boltzmann Method. International Journal for Numerical Methods in Fluids, 59, 753–765.
  • 2. Benzi, R., Succi, S., Vergassola, M. 1992. The Lattice Boltzmann Equation: Theory and Applications. Physics Reports, 222(3), 145–197.
  • 3. Chen, Shiyi., Doolen, Gary D 1998. Lattice Boltzmann Method for Fluid Flows. Annual review of fluid mechanics, 30(1), 329–364.
  • 4. Chen Y., Xiangyangand W., Hanhua Z. 2021. A General Single-Node Second-Order Boundary Condition for the Lattice Boltzmann Method. Physics of Fluids, 33(4).
  • 5. Fennema R.J. Chaudhry M.H. 1990. Explicit Methods for 2‐D Transient Free Surface Flows. Journal of Hydraulic Engineering, 116(8), 1013–1034.
  • 6. Hashemi A., Fischer, Fisher P., Francis L. 2018. Direct Numerical Simulation of Transitional Flow in a Finite Length Curved Pipe. Journal of Turbulence, 19(8), 664–682.
  • 7. He, S., Seddighi, M. 2013. Turbulence in Transient Channel Flow. Journal of Fluid Mechanics, 715, 60–102.
  • 8. Cheylan I., Favier J., Sagaut P. 2021. Immersed Boundary Conditions for Moving Objects in Turbulent Flows with the Lattice-Boltzmann Method.Pdf.
  • 9. Khair A., Wang B.C., Kuhn David S. 2015. Study of Laminar–Turbulent Flow Transition under Pulsatile Conditions in a Constricted Channel. International Journal of Computational Fluid Dynamics, 29(9– 10), 447–463.
  • 10. Li Y., Huang P. 2008. A Coupled Lattice Boltzmann Model for Advection and Anisotropic Dispersion Problem in Shallow Water. Advances in Water Resources, 31(12), 1719–1730.
  • 11. Liang S.J., Tang, J.H., Wu M.S. 2008. Solution of Shallow-Water Equations Using Least-Squares Finite-Element Method. Acta Mechanica Sinica/Lixue Xuebao, 24(5), 523–532.
  • 12. Liu F.L.L.P., Fang, L. 2018. Non-Equilibrium Turbulent Phenomena in Transitional Channel Flows. Journal of Turbulence, 19(9), 731–753.
  • 13. Liu H., Zhou G.J., Burrows R. 2009. Lattice Boltzmann Model for Shallow Water Flows in Curved and Meandering Channels. International Journal of Computational Fluid Dynamics, 23(3), 209–220.
  • 14. Haifei L., Zhou J.G., Burrows R. 2009. Multi-Block Lattice Boltzmann Simulations of Subcritical Flow in Open Channel Junctions. Computers and Fluids, 38(6), 1108–1117.
  • 15. Haifei L., Zhou J.G., Burrows R. 2010. Lattice Boltzmann Simulations of the Transient Shallow Water Flows. Advances in Water Resources, 33(4), 387–396.
  • 16. Haifei L., Zhou J.G., Li M., Yanwei Z. 2013. MultiBlock Lattice Boltzmann Simulations of Solute Transport in Shallow Water Flows. Advances in Water Resources, 58, 24–40.
  • 17. Marusic I., Joseph, D.D., Krishnan M. 2007. Laminar and Turbulent Comparisons for Channel Flow and Flow Control. Journal of Fluid Mechanics, 570, 467–477.
  • 18. Mojab S., Pollard M., Pharoah A., Beale J.G., S.B., Hanff, E.S. 2014. Unsteady Laminar to Turbulent Flow in a Spacer-Filled Channel. Flow, Turbulence and Combustion, 92(1–2), 563–577.
  • 19. Wang N., Ni W., Liu H. 2024. Geometrical Wetting Boundary Condition for Complex Geometries in Lattice Boltzmann Color-Gradient Model.
  • 20. Noble, D., Chen R., Georgiadis S.J.G., Buckius, R.O. 1995. A Consistent Hydrodynamic Boundary Condition for the Lattice Boltzmann Method. Physics of Fluids, 7(1), 203–209.
  • 21. Pargal, S., Yuan J., Brereton, G. 2021. Impulse Response of Turbulent Flow in Smooth and RibletWalled Channels to a Sudden Velocity Increase. Journal of Turbulence, 22(6), 353–379.
  • 22. Peng Y., Zhou J.G., Burrows R. 2011. Modelling Solute Transport in Shallow Water with the Lattice Boltzmann Method. Computers and Fluids, 50(1), 181–188.
  • 23. Qian Y.H., D’Humières D., Lallemand P. 1992. Lattice Bgk Models for Navier-Stokes Equation. Epl, 17(6), 479–484.
  • 24. De Rosis A. 2023. A Comparison of Lattice Boltzmann Schemes for Sub-Critical Shallow Water Flows. Physics of Fluids, 35(4).
  • 25. Schlatter P., Stolz S., Kleiser L. 2006. Large-Eddy Simulation of Spatial Transition in Plane Channel Flow. Journal of Turbulence, 7(September 2014), 1–24.
  • 26. Tubbs K.R., Frank T.C., Tsai. 2009. Multilayer Shallow Water Flow Using Lattice Boltzmann Method with High Performance Computing. Advances in Water Resources, 32(12), 1767–1776.
  • 27. Venturi S., Di Francesco S., Geier M., Manciola P. 2020. A New Collision Operator for Lattice Boltzmann Shallow Water Model: A Convergence and Stability Study. Advances in Water Resources, 135, 103474.
  • 28. Xia Z., Shi Y., Zhao Y. 2015. Assessment of the Shear-Improved Smagorinsky Model in LaminarTurbulent Transitional Channel Flow. Journal of Turbulence, 16(10), 925–936.
  • 29. Yoon T.H., Kang S.-K. 2004. Finite Volume Model for Two-Dimensional Shallow Water Flows on Unstructured Grids. Journal of Hydraulic Engineering, 130(7), 678–688.
  • 30. Zhou J.G. 2002. A Lattice Boltzmann Model for the Shallow Water Equations. Chaos, 191, 3527–3539.
  • 31. Zhou J.G. 2002. A Lattice Boltzmann Model for the Shallow Water Equations with Turbulence Modeling. International Journal of Modern Physics C, 13(8), 1135–1150.
  • 32. Zhou J.G. 2004. Lattice Boltzmann Methods for Shallow Water Flows. Springer.
  • 33. Zou Q., He X. 1997. On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model. Physics of Fluids, 9(6), 1591–1598.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af2b0da9-b19d-4f2a-b5e3-7f7698392129
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.