PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A technique to achieve an excellent strength-ductility balance in AA2024 alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current study, the microstructure and mechanical properties of AA2024 alloy produced by a new technique consisting of solution treatment, instantly followed by asymmetric cold rolling with a reduction of 65%, and subsequent artificial aging (heat treatment) with four temperatures of 190, 300, 400, and 500 °C was investigated. The additional shear strain in asymmetric rolling led to the formation of a high amount of shear bands in the microstructure of AA2024 alloy. During aging treatment at the temperature of 300 °C, recrystallization was locally started in the shear bands. The grain morphology of the rolled sample was not much changed after aging at the temperature of 190 and 300 °C. However, the samples aged at 400 and heat-treated at 500 °C had different microstructures. In addition, with increasing the temperature to 500 °C, numerous dispersoids were formed in the microstructure of the AA2024 alloy. The sample after aging treatment at 190 °C had the maximum hardness, yield strength, and ultimate tensile strength of 207.4 HV, 481.7 MPa, and 605.1 MPa, respectively, along with a desirable elongation (7.9%). By increasing the aging temperature, the hardness and strength of the alloy considerably decreased. The aging treatment at 400 and heat treatment at 500 °C led to the complete elimination of the strain hardening effect and recurrence of Portevin-Le Chatelier (PLC) in the stress-strain curves. The fracture mode was often a ductile mode for all samples. By increasing the aging temperature, the number and size of dimples increased. As a consequence, the processing technique used in the present study resulted in an excellent strength-ductility balance due to an appropriate combination of strain hardening and precipitation hardening.
Rocznik
Strony
art. no. e12, 2023
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
  • Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
Bibliografia
  • 1. Goli F, Jamaati R. Effect of strain path during cold rolling on the microstructure, texture, and mechanical properties of AA2024 aluminum alloy. Mater Res Express. 2019;6: 066514.
  • 2. Liu F, Liu Z, He G. Effect of cold rolling on microstructure and hardness of annealed Al-Cu-Mg alloy. Archiv Civ Mechan Eng. 2022;22:64.
  • 3. Wang Z, Chen M, Jiang H, Li H, Li S. Effect of artificial ageing on strength and ductility of an Al-Cu-Mg-Mn alloy subjected to solutionizing and room-temperature rolling. Mater Charact. 2020;165: 110383.
  • 4. Goli F, Jamaati R. Asymmetric cross rolling (ACR): A novel technique for enhancement of Goss/Brass texture ratio in Al-Cu-Mg alloy. Mater Charact. 2018;142:352-64.
  • 5. Zhao Q, Liu Z, Hu Y, Li S, Bai S. Evolution of Goss texture in an Al-Cu-Mg alloy during cold rolling. Archiv Civ Mechan Eng. 2020;20:24.
  • 6. Goli F, Jamaati R. Intensifying Goss/Brass texture ratio in AA2024 by asymmetric cold rolling. Mater Lett. 2018;219:229-32.
  • 7. Sadeghi-Nezhad D, Mousavi Anijdan SH, Lee H, Shin W, Park N, Nayyeri MJ, Jafarian HR. The effect of cold rolling, double aging and overaging processes on the tensile property and precipitation of AA2024 alloy. J Market Res. 2020;9:15475-85.
  • 8. Feng Z, Yang Y, Huang B, Han M, Luo X, Ru J. Precipitation process along dislocations in Al-Cu-Mg alloy during artificial aging. Mater Sci Eng A. 2010;528:706-14.
  • 9. Li H, Xu W, Wang Z, Fang B, Song R, Zheng Z. Effects of reageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al-Cu-Mg alloys. Mater Sci Eng A. 2016;650:254-63.
  • 10. Doppalapudi D, Venkatachalam P, Ramesh Kumar S, Ravisankar B, Jayashankar K. Improving the mechanical properties of 2024 Al alloy by cryo rolling. Trans Indian Inst Met. 2010;63:31-4.
  • 11. Huang YJ, Chen ZG, Zheng ZQ. A conventional thermo-mechanical process of Al-Cu-Mg alloy for increasing ductility while maintaining high strength. Scripta Mater. 2011;64:382-5.
  • 12. Zhao YL, Yang ZQ, Zhang Z, Su GY, Ma XL. Double-peak age strengthening of cold-worked 2024 aluminum alloy. Acta Mater. 2013;61:1624-38.
  • 13. Li H, Liu R, Liang X, Deng M, Liao H, Huang L. Effect of pre-deformation on microstructures and mechanical properties of high purity Al-Cu-Mg alloy. Trans Nonferrous Metals Soc China. 2016;26:1482-90.
  • 14. Alvand M, Naseri M, Borhani E, Abdollah-Pour H. Nano/ultrafine grained AA2024 alloy processed by accumulative roll bonding: A study of microstructure, deformation texture and mechanical properties. J Alloy Compd. 2017;712:517-25.
  • 15. Mousavi Anijdan SH, Sadeghi-Nezhad D, Lee H, Shin W, Park N, Nayyeri MJ, Jafarian HR, Eivani AR. TEM study of S’ hardening precipitates in the cold rolled and aged AA2024 aluminum alloy: influence on the microstructural evolution, tensile properties & electrical conductivity. J Market Res. 2021;13:798-807.
  • 16. Zuiko IS, Mironov S, Kaibyshev R. Microstructural evolution and strengthening mechanisms operating during cryogenic rolling of solutionized Al-Cu-Mg alloy. Mater Sci Eng A. 2019;745:82-9.
  • 17. Kazemi-Navaee A, Jamaati R, Jamshidi Aval H. Asymmetric cold rolling of AA7075 alloy: The evolution of microstructure, crystallographic texture, and mechanical properties. Mater Sci Eng A. 2021;824:141801.
  • 18. Jin H, Lloyd DJ. The reduction of planar anisotropy by texture modification through asymmetric rolling and annealing in AA5754. Mater Sci Eng A. 2005;399:358-67.
  • 19. Magalhaes DCC, Kliauga AM, Ferrante M, Sordi VL. Asymmetric cryorolling of AA6061 Al alloy: Strain distribution, texture and age hardening behavior. Mater Sci Eng A. 2018;736:53-60.
  • 20. Zuiko IS, Kaibyshev R. Ageing response of cold-rolled Al-Cu-Mg alloy. Mater Sci Eng A. 2020;781: 139148.
  • 21. Amininejad A, Jamaati R, Hosseinipour SJ. Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Mater Sci Eng A. 2019;767: 138433.
  • 22. Panigrahi SK, Jayaganthan R. A study on the mechanical properties of cryorolled Al-Mg-Si alloy. Mater Sci Eng A. 2008;480:299-305.
  • 23. Amininejad A, Jamaati R, Hosseinipour SJ. Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling. Mater Chem Phys. 2020;256: 123668.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af271a3f-9afd-473e-84f1-dc7b4a0f058a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.