PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Membrane Fouling Effect During Nanofiltration of Wastewater from Dyeing Cellulose and Polyamide Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zjawisko foulingu membran podczas nanofiltracji ścieków z barwienia włókien celulozowych i włókien poliamidowych
Języki publikacji
EN
Abstrakty
EN
The aim of research was to compare the parameters of nanofiltration of textile wastewater generated in two different dyeing processes. Tests were carried out for wastewater from dyeing cellulose fibres with direct and reactive dyes and from dyeing polyamide fibres with acid dyes. The applicability of selected nanofiltration membranes, including polysulfone, cellulose acetate and polyamide membranes, in the filtration of some wastewater streams was examined. Research was carried out to investigate the fouling of membranes during wastewater nanofiltration. During the filtration of the wastewater after reactive dyeing, a significant reduction in the process efficiency due to membrane fouling was observed. In the case of wastewater from the dyeing of polyamide fibres, a reduction in the process efficiency during the membrane operation did not occur at all or was very small.
PL
Celem badań było porównanie parametrów nanofiltracji ścieków włókienniczych pochodzących z dwóch różnych procesów barwienia. Badania przeprowadzono dla ścieków pochodzących z barwienia włókien celulozowych barwnikami bezpośrednimi i reaktywnymi, oraz ścieków z procesów barwienia wyrobów z włókien poliamidowych barwnikami kwasowymi. W pracy sprawdzono możliwość zastosowania wybranych membran nanofiltracyjnych (w tym polisulfonowych, z octanu celulozy i poliamidowych) w procesie filtracji wybranych strumieni ścieków. Badania prowadzono pod kątem zjawiska foulingu membran w trakcie nanofiltracji ścieków. Podczas filtracji ścieków z barwienia reaktywnego zaobserwowano znaczne obniżenie wydajności procesu na skutek efektu foulingu membrany. W przypadku ścieków z barwienia włókien poliamidowych, zjawisko redukcji wydajności procesu w trakcie pracy membrany nie występowało, lub było niewielkie.
Rocznik
Strony
225--233
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland
  • Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland
autor
  • Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland
Bibliografia
  • 1. Allégre C, Moulin P, Maisseu M and Charbit F. Saving and Reuse of Salt and Water Present in Dye House Effluents. Desalination 2004; 162: 13-22.
  • 2. Allégre C, Moulin P, Maisseu M and Charbit F. Treatment and Reuse of Reactive Dyeing Effluents. Journal of Membrane Science 2006; 269: 15-34.
  • 3. Avlonitis SA, Poulios I, Sotiriou D, Pappas M and Moutesidis K. Simulated Cotton Dye Effluents Treatment and Reuse by Nanofiltration. Desalination 2008; 221: 259-267.
  • 4. Amar NB, Kechaou N, Palmeri J, Deratani A and Sghaier A. Comparison of Tertiary Treatment by Nanofiltration and Reverse Osmosis for Water Reuse in Denim Textile Industry. Journal of Hazardous Materials 2009; 170: 111-117.
  • 5. Koyuncu I, Topacik D, Ebubekir Y. Reuse of Reactive Dyehouse Wastewater by Nanofiltration: Process Water Quality and Economical Implications. Separation and Purification Technology, 2004; 36: 77-85.
  • 6. Petrinić I and Andersen NPR, Sostar-Turk S, Le Marechal AM. The Removal of Reactive Dye Printing Compounds Using Nanofiltration. Dyes and Pigments 2007; 74: 512-518.
  • 7. De Vreese I and Van der Bruggen B. Cotton and Polyester Dyeing Using Nanofiltered Wastewater. Dyes and Pigments 2007; 74: 313-319.
  • 8. Dhodapkar RS, Pophali GR, Nandy T and Devotta S. Exploitation Results of Seven RO Plants for Recovery and Reuse of Treated Effluents in Textile Industries. Desalination 2007; 217: 291-300.
  • 9. Chidambaram T, Oren Y and Noel M. Fouling of nanofiltration by dyes during brine recovery from textile dye bath wastewater. Chemical Engineering Journal 2015; 262: 156-168.
  • 10. Linkhorst J and Lewis WJT. Workshop on membrane fouling and monitoring : a summary. Desalination and Water Treatment 2013; 51: 6401-6406.
  • 11. Suwal S, Doyen A and Bazinet L. Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: Review of current and recently developed methods. Journal of Membrane Science 2015; 496: 267-283.
  • 12. Xu P, Drewes JE, Kim T-U, Bellona C and Amy G. Effect of membrane fouling on transport of organic contaminants In NF/RO membrane applications. Journal of Membrane Science 2006; 279: 165-175.
  • 13. Vogel D, Simon A, Alturki AA and Bilitewski B. Effects of fouling and scaling on the retention of trace organic contaminants by a nanofiltration membrane: The role of cake-enhanced concentration polarization. Separation and Purification Technology 2010; 73: 256-263.
  • 14. Tzotzi C, Pahiadaki T, Yantsios SG, Karabelas AJ and Andritsos N. A study of CaCO3 scale formation and inhibition in RO and NF membrane processes. Journal of Membrane Science 2007; 296: 171-184.
  • 15. Sheikholeslami R. Assessment of the scaling potential for sparingly soluble salts in RO and NF units. Desalination 2004; 167: 247-256.
  • 16. Hoek EMV and Elimelech M. Cake enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Environmental Science and Technology 2003; 37: 5581-5588.
  • 17. Petersen RJ. Composite reverse osmosis and nanofiltration membranes. Journal of Membrane Science 1993; 83: 81-150. (after Muppalla et al. [18])
  • 18. Muppalla R, Jewrajka SK and Reddy AVR. Fouling resistant nanofiltration membranes for the separation of oil-water emulsion and micropollutants from water. Separation and Purification Technology 2015; 143: 125-134.
  • 19. Bellona C and Drewes JE. The role of membrane surface charge and solute physic-chemical properties in the rejection of organic acids by NF membranes. Journal of Membrane Science 2005; 249: 227-234.
  • 20. Bellona C, Drewes JE, Xu P and Amy G. Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review. Water Research 2004; 38: 2795-2809.
  • 21. Childress AE and Elimelech M. Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics. Environmental Science Technology 2000; 34: 3710-3716.
  • 22. Sekar N and Gehlot VY. Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent Developments. Resonance 2010; 15: 819-831.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af22488a-23f4-46ef-a831-edc943385299
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.