PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid nanobiocomposites based on poly(3-hydroxybutyrate) : characterization, thermal and mechanical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly(3-hydroxybutyrate) is a biopolymer used to production of implants in the human body. On the other hand, the physical and mechanical properties of poly(3-hydroxybutyrate) are compared to the properties of isotactic polypropylene what makes poly(3-hydroxybutyrate) possible substitute for polypropylene. Unfortunately, the melting point of poly(3-hydroxybutyrate) is almost equal to its degradation temperature what gives very narrow window of its processing conditions. Therefore, numerous attempts are being made to improve the poly(3-hydroxybutyrate) properties. In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate) as a matrix with the use of organic nanoclay – Cloisite 30B and linear polyurethane as a second filler have been manufactured. The linear polyurethane was based on diphenylmethane 4,4′-diisocyanate and diol with imidazoquinazoline rings. The obtained nanobiocomposites were characterized by X-ray diffraction, scanning and transmission electron microscopies, thermogravimetry, differential scanning calorimetry and their selected mechanical properties were tested. The resulting hybrid nanobiocomposites have intercalated/exfoliated structure. The nanobiocomposites are characterized by a higher thermal stability and a wider range of processing temperatures compared to the unfilled matrix. The plasticizing influence of nanofillers was also observed. In addition, the mechanical properties of the discussed nanobiocomposites were examined and compared to those of the unfilled poly(3-hydroxybutyrate). The new-obtained nanobiocomposites based on poly(3-hydroxybutyrate) containing 1% Cloisite 30B and 5 wt. % of the linear of polyurethane characterized the highest improvement of processing conditions. They have the biggest difference between the temperature of degradation and the onset melting temperature, about 100 °C.
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland
  • Department of Experimental and Clinical Pharmacology, Faculty of Medicine, The University of Rzeszow, Rzeszów, Poland
  • Department of Integrated Design Systems and Tribology, Faculty of Mechanics and Technology, Rzeszow University of Technology, Stalowa Wola, Poland
  • Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland
autor
  • Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland
  • Department of Integrated Design Systems and Tribology, Faculty of Mechanics and Technology, Rzeszow University of Technology, Stalowa Wola, Poland
  • Department of Polymers and Biopolymers, Faculty of Chemistry, Rzeszow University of Technology, Rzeszów, Poland
  • Centre of Polymer Systems, Tomas Bata University in Zlin, Czech Republic
Bibliografia
  • [1] BAKAR M., HAUSNEROVA B., KOSTRZEWA M., Effect of diisocyanates on the properties and morphology of epoxy/ polyurethane interpenetrating polymer networks, J. Thermoplast. Compos. Mater., 2012, 26 (10), 1364–1376, DOI: org/10.1177/ 0892705712439570.
  • [2] BAKAR M., KOSTRZEWA M., PAWELEC Z., Preparation and properties of epoxy resin modified with polyurethane based on hexamethylene diisocyanate and different polyols, J. Thermoplast. Compos. Mater., 2014, 27 (5), 620–631, DOI: org/10.1177/ 0892705712453155.
  • [3] BAKAR M., KOSTRZEWA M., HAUSNEROVA B., SAR K., Preparation and property evaluation of nanocomposites based on polyurethane-modified epoxy/montmorillonite systems, Adv. Polym. Tech., 2010, 29 (4), 237–248, DOI: 10.1002/adv.20192.
  • [4] BAOUZ T., REZGUI F., YILMAZER U., Ethylene-methyl acrylate-glycidyl methacrylate toughened poly(lactic acid) nanocomposites, J. Appl. Polym. Sci., 2013, 128 (5), 3193–3204, DOI: 10.1002/app.38529.
  • [5] CHEN G.Q., WU Q., The application of polyhydroxyalkanoates as tissue engineering materials, Biomaterials, 2005, 26(33), 6565–6578, 10.1016/j.biomaterials.2005.04.036
  • [6] CZERNIECKA A., MAGOŃ A., SCHLIESSER J., WOODFIELD B.F., PYDA M., Heat capacity of poly(3-hydroxybutyrate), J. Chem. Thermodyn., 2014, 73, 76–84, DOI: org/10.2016/ j.jct.2013.10.020.
  • [7] CZERNIECKA-KUBICKA A., FRĄCZ W., JASIORSKI M., BŁAŻEJEWSKI W., PILCH-PITERA B., PYDA M., ZARZYKA I., Thermal properties of poly(3-hydroxybutyrate) modified by nanoclay, J. Therm. Anal. Calorim., 2017, 125, 1513–1526, DOI: org/10.1007/s10973-016-6039-9.
  • [8] CZERNIECKA-KUBICKA A., SCHLIESSER J., WOODFIELD B.F., ZARZYKA I., PYDA M., Vibrational Heat Capacity of Poly(N- -isopropylacrylamide), Polymer, 2015, 63, 108–115, DOI: org/10.1016/j.polymer.2015.02.051.
  • [9] CZERNIECKA-KUBICKA A., ZARZYKA I., PYDA M., Advanced thermal analysis of poly(3-hydroxybutyrate), Przem. Chem., 2015, 11, 45–49.
  • [10] CZERNIECKA-KUBICKA A., ZARZYKA I., PYDA M., Advanced analysis of poly(3-hydroxybutyrate) phases based on vibrational heat capacity, J. Therm. Anal. Calorim., 2017, 127, 905–914, DOI: org/10.1007/s1097
  • [11] DOI Y., KAMESAWA Y., KUNIOKA M., SAITO T., Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3- -hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), Macromolecules, 1990, 23 (1), 26–31.
  • [12] FERNANDES E.G., PIETRINI M., CHIELLINI E., Thermomechanical and morphological characterization of plasticized poly(R-3-hydroxybutyric acid), Macromolecular Symposia, 2004, 218, 157–164.
  • [13] GOŁĘBIEWSKI J., GIBAS E., MALINOWSKI R., Wybrane polimery biodegradowalne – otrzymywanie, właściwości, zastosowanie, Polimery, 2008, 53, 799–807 (in Polish).
  • [14] HABLOT E., BORDES P., POLLET E., AVEROUS L., Thermal and thermo-mechanical degradation of poly(3-hydroxybutyrate)- based multiphase systems, Polym. Degrad. Stabil., 2008, 93 (2), 413–421, DOI: 10.1016/j.polymdegradstab.2007.11.018.
  • [15] JANIGOVÁ I., LACÍK I., CHODÁK I., Thermal degradation of plasticized poly(3-hyd-roxybutyrate) investigated by DSC, Polym. Degrad. Stabil., 2002, 77 (1), 35–41, DOI: 10.1063/1.4918384.
  • [16] KOSTRZEWA M., HAUSNEROVA B., BAKAR M., DALKA M., Property evaluation and structure analysis of polyurethane/ epoxy graft interpenetrating polymer networks, J. Appl. Polym. Sci., 2011, 122, 1722–1730, DOI: org/10.1002/ app.34070.
  • [17] KOSTRZEWA M., HAUSNEROVA B., BAKAR M., PAJĄK K., Preparation and characterization of an epoxy resin modified by a combination of MDI-based polyurethane and montmorillonite, J. Appl. Polym. Sci., 2011, 122, 3237–3247, DOI: org/10.1002/app.34347.
  • [18] LEE S.N., LEE M.Y., PARK W.H., Thermal stabilization of poly(3-hydroxybutyrate) by poly(glycidyl methacrylate, J. Appl. Polym. Sci., 2002, 83 (13), 2945–2952, DOI: org/ 10.1002/app.10318.
  • [19] MAGOŃ A., PYDA M., Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis, Polymer, 2009, 50, 3967–3973, DOI: 10.1016/ j.polymer.2009.06.052.
  • [20] PAK J., QIU W., PYDA M., NOWAK-PYDA E., WUNDERLICH B., Can One Measure Precise Heat Capacities with DSC or TMDSC? A Study of the Baseline and Heat-flow-rate Correction, J. Thermal. Anal. Calorimetry, 2005, 82, 565–574, DOI: 10.1007/s10973-005-0935-8.
  • [21] PANAYOTIDOU E., BAKLAVARIDIS A., ZUBURTIKUDIS I., ACHILLAS D.S., Nanocomposites of poly(3-hydroxybutyrate)/organomodified montmorillonite: Effect of the nanofiller on the polymer’s Biodegradation, J. Appl. Polym. Sci., 2015, 132 (11), 41656–41663, DOI: org/10.1002/ app.41656.
  • [22] PYDA M., Temperature-Modulated Differential Scanning Calorimetry (TMDSC), [in:] Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., 2014, 1–30, DOI: 10.1002/0471440264.
  • [23] PYDA M., CZERNIECKA-KUBICKA A., Thermal Properties and Thermodynamics of Poly(l-lactic acid), [in:] M.L. Di Lorenzo, R. Androsch (Eds.), Synthesis, Structure and Properties of Poly(lactic acid), Springer International Publishing, Cham 2018, 153–193, DOI: 10.1007/12_2017_19.
  • [24] SZYSZKOWSKA A., CZERNIECKA-KUBICKA A., PYDA M., BYCZYŃSKI Ł., GANCARCZYK K., SEDLARIK V., ZARZYKA I., Linear polyurethanes with imidazoquinazoline rings – preparation and properties evaluation, Polym. Bull., 2019, DOI: 10.1007/s00289-019-02702-5.
  • [25] WUNDERLICH B., Thermal Analysis of Polymeric Materials, Springer, Berlin, Heidelberg, New York 2005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af1e9817-c39f-4046-8884-9336b254f437
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.