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SIMULATION OF VERTICAL VEHICLE NON-STATIONARY 
RANDOM VIBRATIONS CONSIDERING VARIOUS SPEEDS 

Summary. The aim of the paper is the application of evolutionary non-stationary random 
vibration theory in the classic statistical solution vibrations. The dynamic model parameters 
are the deterministic function. The evolutionary non-stationary random function will 
be modelled by changeable speed of the vehicle model and vertical irregularity of track. It’ll 
assume evolutionary Gaussian process. 
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SYMULACJA PIONOWYCH NIESTACJONARNYCH PRZYPADKOWYCH 
WIBRACJI POJAZDU Z PRĘDKOŚCIĄ ZMIENNĄ  

Streszczenie. Celem artykułu jest zastosowanie teorii ewolucyjnych niestacjonarnych 
przypadkowych procesów w rozwiązywaniu problemu drgania pojazdów z prędkością 
zmienną. Model dynamiczny pojazdu zakłada parametry deterministyczne, a niestacjonarność 
procesu będzie modelowana właśnie za pomocą zmiennej prędkości oraz pionowych 
nierówności trasy. Będzie przy tym uwzględniany proces ewolucyjny Gaussa. 

Słowa kluczowe: niestacjonarny proces przypadkowy, wartość średnia, kowariancja. 

1. INTRODUCTION 

A lot of papers in stochastic dynamics are devoted to Gaussian stationary excitations but 
only a few random processes in engineering practice are really Gaussian and stationary. 
Stochastic loadings will be interpreted not only as external forces, but also as external 
kinematic effects. Bolotin defined [1] random excitation as follows loading due 
to atmospheric turbulence, acoustic loading, loading due to pulsation in a turbulent boundary 
layer, loading due to pressure of sea waves, loading of transport machines due to unevenness 
of  track, and seismic loading. 

In the case of stochastic systems (especially non-linear) we encounter the approaches, 
such as: tangent linearization method (TLM) [8], statistical linearization method (SLM) 
in various modifications [1, 2, 3, 5, 7], statistical quadratization method, the Markov process 
approach (MPT) [9], functional method of Volterra and Wiener (FMVW) [8], asymptotic 
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method of Krylov–Bogoljubov–Mitropolsky (ASM) [2], perturbation method (PM) and its 
modifications [2, 6, 7]. 

Thanks to computer techniques, Monte Carlo simulation method (MCS) is very popular 
and frequently applied [8, 9]. Although this method is straightforward and does not have such 
limitations, is generally time-consuming and costly. In view of these difficulties, approximate 
methods, including PM, TLM, SLM, SQM can be advantageous. Some authors look 
for the new approaches of the solution by combining the Monte Carlo method with other 
methods [4]. 

2. MATHEMATICAL MODEL 

To construct a mathematical model of a system for dynamic analysis, it is necessary 
to idealize the inertia, damping and stiffness properties by discrete or continuous elements. 
Usually the first step is to construct a physical model that may be an assemblage of discrete 
elements such as mass, springs and dashpots, continuous elements such as bars, beams, shells 
and volumes, or a combination of both discrete and continuous elements. The application 
of the fundamental laws of mechanics yields a set of generally non-linear differential 
equations 

)()(),()( tttt fxxAx   (1)

where x(t) is the response vector corresponding to the random excitation vector f(t), A(x,t) 
is the real or complex structural matrix of order nn. A(x,t) may be linear or non-linear, 
depending on the nature of the problem [10]. Many mechanical models are linear thanks 
to their analytical simplicity and the fact that they yield realistic results for large class 
problems.  

There are, however, a number of problems for which linear models do not yield 
acceptable results, so that it becomes necessary to construct non-linear models. It means, 
if A(x,t) is non-linear, we can apply well-known approximate methods (PM, TLM, SLM 
or SQM). Using linearization techniques we get the statistically equivalent structural 
matrix A. 

This study presents two approaches in determining the response of a system modelled 
by equation (1) by the Markov processes theory; and Monte Carlo simulation. 

The Markov process formulation requires the idealization that the excitation 
is independent at two instants of time regardless of how close they are (delta correlation) [9]. 
This assumption, which is clearly physically unrealizable, leads to such models as white noise 
and processes obtained by linearly filtering white noise.   

Let us consider the system of first-order differential equations (1) with initial conditions 
x(0) = 0 and force excitation f(t) = y(t).p(t). The force f(t) is a modulated evolutionary process 
vector with a deterministic vector function y(t) and stationary random process p(t) with zero 
mean. The mean response of x(t) is 

)()()( ttt fxx mmAm  , (2)

where mx= E[x] is the mean vector and E[…] is the value operator. The covariance response 
of  x(t) is 

TTTttt byybKAKAK  ))(()()( , (3)
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where K(t) is the covariance matrix, 
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Equations (2) and (3) imply that mean vector and covariance matrix are the time 
functions. Matrix h(t) is so-called the fundamental solution matrix or impulse response 
matrix. If it is assumed that p(t) is white noise with E[p(t1).p(t2)] = 2..0.(t2-t1), then 
the equation (3) can be expressed as 

)()(2))(()()( 0 ttttt TT yyKAKAK  , (6)

where 0  is the power spectral density of p(t). The acceptable solution of the equation (6) 
is possible to make by special numerical approach. 

Let us consider Crank-Nicolson integration method. The discrete time derivation is given 
by 
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where  is the time step of the integration method. Using the equations (2), (6) and (7) we can 
write 
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where I is the identity matrix. The equation (9) is so-called Lyapunov-Sylvester equation 
subjected to Crank-Nicolson integration approach. In each time step is necessary to use the 
special numerical algorithm assembled and applied in MATLAB. 

3. TESTING ANALYSIS - RAILWAY VEHICLE VIBRATION 

A vehicle moving on railway track causes 
vibrations. Since the profile of a track is a random 
function of the spatial coordinates, these vibrations are 
also random. We shall assume that the motion of the 
vehicle in the horizontal direction is non-uniform 
(changeable speed, although more important non-
stationarity can be the changeable track quality). 

Using previous theory we shall solve the response 
of the simple vehicle model (Fig. 1) under non-
stationary random excitation. Let us determine the first 
and second statistical moments (i.e. the mean vector and 
the covariance matrix) of the response of the mechanical 
model on Fig.1. The structural parameters are: mass of 

m2                                    x2    

 

 

    k2                 b2 

 
  m1                     x1 
 
    k1                 b1 

 
                          u(t) 
 

Fig. 1. Dynamic model of vehicle 
Rys. 1. Dynamiczny model pojazdu 
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bogie m1=3000 kg, mass of body of coach m2=13000 kg, damping coefficient in vertical 
direction 
b1=120000 Nsm-1, damping coefficient in vertical direction b2=100000 Nsm-1, vertical 
stiffness k1=3000000 Nm-1, vertical stiffness k2=1500000 Nm-1. 

Let us consider the approximation of the power spectral density of vertical 
unevenness u(t) of track in due order ORE B 176  in the form 
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where a = 0.0206, b=0.8246, A = 4.032·10-7 for a good track and A = 1.08·10-8 for a bad 

track.  is the length frequency.  If the vehicle speed is time function v = v(t) and 
v


 , then 

]
)(

[]
)(

[
)(

1
),(

2
2

2
2

2

2

2

b
tv

a
tv

bA

tv
tSuu








 , 

(11)

where  is the circular frequency.  
Applying the Markov process theory we shall need to use the assumption 

of an evolutionary random excitation with a deterministic modulated function and white noise 
process. Therefore, it is necessary to define the filter parameters of the excitation function. 
A commonly used filter in modelling of the earthquake ground motion is the Kanai-Tajimi 
filter governed by the following differential equation 

)(twukubum eee   , (12)

where w(t) is well-known Gaussian white noise process with constant power spectral density 
S0. The frequency response function of the filter can be expressed as 
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Comparing the power spectral density of u(t) from (12) and (11) we get 
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Let us construct the equations of motion 
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Considering (11), (13) and 2-dimensional state vector by substitute 
uyxyxyuyxyxy   6251432211 ,,,,,   the equations of motion can be expressed as 

)()()()()( twtttt  byAy , (16)
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Considering E(y) = 0 we obtain the covariance response by using (4) as follows 
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The numerical solution can be realizing by (9). 
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where T (= 120 [s])  is duration of the simulation. The results of the solution are shown 
in graphic form on Figs. 2 - 4. We compare the standard deviation of vertical displacements, 
velocities and accelerations of mass bodies 1 and 2 for the track quality parameter 
A = 4.032·10-7 (good track) and A = 1.08·10-8 (bad track).  
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Fig. 2. Time behaviour of the standard deviation of 
           displacement x1 

            Monte Carlo simulation    
            Markov process theory 

Rys. 2. Charakterystyka czasowa odchylenia 
              standardowego 
             symulacja Monte Carlo  
             symulacja procesu Markowa 

Fig. 3. Time behaviour of the standard deviation of  
            displacement x2 

             Monte Carlo simulation 
             Markov process theory 

Rys. 3. Charakterystyka czasowa odchylenia 
            standardowego 
             symulacja Monte Carlo  
             symulacja procesu Markowa 
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4. CONCLUSION 

In our study, a non-stationary vibration description is extended to the dynamic analyses 
of vehicles by using the Markov process theory and “classic” Monte Carlo approach, which 
eliminate the traditional restriction of constant speed (or the track quality) during the period 
oscillation. Particularly, after a series of numerical analyses (Monte Carlo), the presented 
Markov vector approach is very effective and rapid with respect to the computational time 
(approximately fifty times more rapid). The Monte Carlo simulation is applied to check 
the accuracy of the results, which show a fairly good comparison. Finally, it should 
be emphasized that these statistically responses are very useful for estimating the reliability 
of the vehicles structures. 
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