PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Antimicrobial Functionalization of Textile Materials with Copper Silicate

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biofunkcjonalizacja materiałów włókienniczych
Języki publikacji
EN
Abstrakty
EN
A biofunctionalization of nonwoven fabrics was carried out with 0.1 - 4 wt.% of copper silicate. Polypropylene (PP), polyethylene (PE) and biodegradable polymers [poly(lactic acid) (PLA), polyhydroxyalkanoates (PHA)] or their mixtures were used as polymer components. Mostly liquid oligomers of ethylene glycol (PEG) or copolymers of ethylene oxide and propylene oxide (2.5 - 5 wt.%) were applied as plasticizers. New composite nonwovens containing CuSiO3 were prepared by the melt-blown technique [1]. They showed very good antibacterial and antifungal properties against colonies of gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus) and a yeast fungus (Candida albicans). Nonwovens containing ≥ 0.5 wt.% of CuSiO3 can be used, e.g. as hygienic and bioactive filter materials in air-conditioning systems. The application of PLA and PHA affects the ability of these hybrid nonwovens to biologically decompose. DSC analysis indicated that the incorporation of additives in PLA and PP nonwovens significantly affected their melting and crystallization processes.
PL
Badano proces biofunkcjonalizacji włóknin za pomocą 0,1 - 4 % wag. krzemianu miedzi. Jako komponenty polimerowe zastosowano polipropylen (PP), polietylen (PE) i polimery biodegradowalne [polilaktyd (PLA) i polihydroksyalkaniany (PHA)] lub ich mieszaniny. Jako ciekłe plastyfikatory stosowano głównie oligomery tlenku etylenu (PEG) lub jego kopolimery z tlenkiem propylenu (2,5-5 % wag.). Nowe kompozytowe włókniny zawierające CuSiO3 otrzymywano metodą melt-blown – przez wytłaczanie i rozdmuchiwanie stopionych kompozycji polimerowych [1]. Wykazywały one bardzo dobre właściwości antybakteryjne (wobec szczepów bakterii gram-ujemnych Escherichia coli i gram-dodatnich Staphylococcus aureus) oraz antygrzybiczne (wobec grzyba Candida albicans). Włókniny zawierające ≥0.5% wag. CuSiO3 mogą być stosowane np. jako bioaktywne materiały higieniczne i filtracyjne w układach klimatyzacji. Zastosowanie PLA i PHA zwiększa podatność tych hybrydowych włóknin na rozkład biologiczny. Analiza termiczna metodą DSC wykazała, że dodatek CuSiO3 i plastyfikatorów do włóknin PLA i PP znacznie wpływa na przebieg ich procesów topnienia i krystalizacji.
Rocznik
Strony
151--156
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Textile Research Institute, Łódź, Poland
  • Textile Research Institute, Łódź, Poland
autor
  • Textile Research Institute, Łódź, Poland
  • Textile Research Institute, Łódź, Poland
autor
  • Pulp and Paper Research Institute, Łódź, Poland
Bibliografia
  • 1. Sójka-Ledakowicz J, Chruściel J, Kudzin M and, Kiwała M. (a) Polish Pat. Appl. P-411 473, 2015; (b) Eur. Pat. Appl. EP 15195767.7, 2015.
  • 2. Berger TJ, Spadaro JA, Bierman R, Chapin SE, Becker RO. Antifungal properties of electrically generated metallicions. Antimicrobial Agents and Chemotherapy 1976; 10: 856-860.
  • 3. Hunter JM. Geophagy in Africa and the United-States. Geographical Reviews 1973; 63: 170-195.
  • 4. Domek MJ, Lechevallier MW, Cameron SC, McFeters GA. Evidence for the role of copper in the injury process of Coliform bacteria in drinking water. Applied and Environmental Microbiology 1984; 48: 289-293.
  • 5. Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, Das S, Nandy P. In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloilds and Surfaces B: Biointerfaces 2013; 108: 358-365.
  • 6. Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X. Biodegradable electrospun poly(L-lactide) fbers containing antibacterial silver nanoparticles. European Polymer Journal 2006; 42: 2081-2087.
  • 7. Zou K, Liu Q, Chen J, Du J. Silver-decorated biodegradable polymer vesicles with excellent antibacterial efcacy. Polymer Chemistry 2014; 5: 405-411.
  • 8. Van Hyning DL. Yarns and fabrics having a wash-durable antimicrobial silver particulate fnish. Patent US 7 232 777, 2007.
  • 9. Rybicki E, Filipowska B, Walawska A, Kozicki M, Matyjas-Zgondek E. Sposób nadawania płaskim wyrobom włókienniczym właściwości antybakteryjnych i antygrzybicznych. Patent PL 214689 B1, 2013.
  • 10. Lee HJ, Yeo SY, and Jeong SH. Antibacterial efect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 2003; 38: 2199-2204.
  • 11. Yan J, Cheng J. Antimicrobial yarn having nanosilver particles and methods for manufacturing the same. Patent US 6 979 491, 2005.
  • 12. Bucheńska J, Słomkowski S, Tazbir J, Timler D, Sobolewska E, Karaszewska A. Sposób nadawania włóknom poliestrowym właściwości antybakteryjnych. Patent PL 196 213 B1, 2007.
  • 13. Rybicki E, Filipowska B, Walawska A, Grad J, Wilk E, Żakowska Z, Stobińska H, Rosiak J. Sposób nadawania wyrobom włókienniczym właściwości antybakteryjnych lub terapeutycznych. Patent PL 200 059 B1, 2008.
  • 14. Ghosh S, Sankar RG, Vandana V. Curious Case of Bactericidal Action of ZnO. Journal of Nanoscience 2014; Article ID 343467; http://dx.doi.org/10.1155/2014/343467
  • 15. Zegaoui O, Moukrad N, Daou I, Filali FR, Louazri L., Ahlaf H. Study of the infuence of the shape and size of the ZnO nanoparticles synthesized from diferent precursors on the antibacterial activity. Journal of Advances in Chemistry 2014; 10: 2246-2253.
  • 16. Rode C, Zieger M, Wyrwa R, Thein S, Wiegand C, Weiser M, Ludwig A, Wehner D, Hipler U-C. Antibacterial Zinc Oxide Nanoparticle Coating of Polyester Fabrics. Journal of Textile Science and Technology 2015; 1: 65-74.
  • 17. Dĕdkova K., Janiková B, Matĕjová K, Peikertová P, Neuwirthová L, Holešinský J, Kukutschová J. Preparation, characterization and antibacterial properties of ZnO/kaoline nanocomposites. Journal of Photochemistry and Photobiology B: Biology 2015; 148: 113-117.
  • 18. Joy PH, Johnson I. Hydrothermal Synthesis of ZnO Nano-Honeycomb Structures and their Activity against Pathogenic Bacteria. International Journal of PharmTech Research 2015; 8: 65-71.
  • 19. Kumar LY. Role and adverse efects of nanomaterials in food technology, Journal of Toxicology and Health 2015; 2, Article; doi: 10.7243/2056-3779-2-2
  • 20. Park E-S. Antimicrobial polymeric materials for packaging applications: A review. Formatex 2015; 500-511.
  • 21. Kumar BS. Self-Cleaning Finish on Cotton Textile Using Sol-Gel Derived TiO2 Nano Finish. IOSR Journal of Polymer and Textile Engineering 2015; 2: 1-5.
  • 22. Galkina OL, Sycheva A, Blagodatskiy А, Kaptay G, Katanaev VL, Seisenbaeva GA, Kessler VG, Agafonov AV. The sol-gel synthesis of cotton/TiO2 composites and their antibacterial properties. Surface and Coatings Technology 2014; 253: 171–179.
  • 23. Shi L-E, Xing L, Hou B, Ge H, Guo X, Tang Z. Inorganic nano metal oxides used as anti-microorganism agents for pathogen control. Formatex 2010; 361-368.
  • 24. Petronella F, Rtimi S, Comparelli R, Sanjjines R, Pulgarin C, Curri ML, Kiwi J. Uniform TiO2/In2O3 surface flms effective in bacterial inactivation under visible light. Journal of Photochemistry and Photobiology A: Chemistry 2014; 279: 1–7.
  • 25. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal efect of silver nanoparticles. Nanotechnology 2005; 16:2346-2353.
  • 26. Verran J, Sandoval G, Allen NS, Edge M, Stratton J. Variables afecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes and Pigments 2007; 73: 298-304.
  • 27. Borkow G, Gabbay J. Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J. 2004; 18: 1728–1737.
  • 28. Borkow G, Sidwell RW, Smee DF, Barnard DL, Morrey JD, Lara-Villegas HH, Shemer-Avni Y, Gabbay J. Neutralizing Viruses in Suspensions by Copper Oxide-Based Filters. Antimicrobial Agents and Chemotherapy 2007; 51: 2605-2607.
  • 29. Ren, G., D. Hu, E.W.C. Cheng, M.A. Vargas-Reusc, P. Reipd, and R.P. Allaker. 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33: 587-590.
  • 30. Ravishankar RV, Jamuna BA. Nanoparticles and their potential application as antimicrobials. Formatex 2011; 197-209.
  • 31. Weinberg I, Lazary A, Jefdof A, Vatine JJ, Borkow G, Ohana N. Safety of Using Diapers Containing Copper Oxide in Chronic Care Elderly Patients. The Open Biology Journal 2013: 6: 1-7.
  • 32. Rani R, Kumar H, Salar RK, Purewal SS. Antibacterial activity of copper oxide nanoparticles against gram negative bacterial strain synthesized by reverse micelle technique. International Journal of Pharmaceutical Research and Developments 2014; 6: 72-78.
  • 33. Pallavicini P, Dacarro G, Cucca L, Denat F, Grisoli P, Patrini M, Sok N, Taglietti A. A mono-layer of a Cu2+-tetraazamacrocyclic complex on glass as the adhesive layer for silver nanoparticles grafting, in the preparation of surface-active antibacterial materials. New Journal of Chemistry 2011; 35: 1198-1201.
  • 34. Gabbay J, Borkow G, Mishal J, Magen E, Zatcof R, Shemer-Avni Y. Copper Oxide Impregnated Textiles with Potent Biocidal Activities. Journal of Industrial Textiles 2006; 35: 323-335.
  • 35. Deng D, Cheng Y, Jin Y, Qi T, Xiao F. Antioxidative efect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. Journal of Materials Chemistry 2012; 22: 23989.
  • 36. Ciof N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chemistry of Materials 2005; 17: 5255–5262.
  • 37. Konieczny J, Rdzawski Z. Antibacterial properties of copper and its alloys. Archives of Materials Science and Engineering 2012; 56: 53-60.
  • 38. Trapalis CC, Kokkoris M, Perdikakis G, Kordas G. Study of Antibacterial Composite Cu/SiO2 Thin Coatings. Journal of Sol-Gel Science and Technology 2003; 26: 1213–1218.
  • 39. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS. Preparation and Characterization of the Antibacterial Cu Nanoparticle Formed on the Surface of SiO2 Nanoparticles. J. Phys. Chem. B 2006; 110: 24923-24928.
  • 40. Singh A, Krishna V, Angerhofer A, Do B, MacDonald G, Moudgil B. Copper Coated Silica Nanoparticles for Odor Removal. Langmuir 2010; 26: 15837-15844.
  • 41. Wu X, Ye L, Liu K, Wang W, Wei J, Chen F, Liu C. Antibacterial properties of mesoporous copper-doped silica xerogels. Biomedical Materials 2009; 4: 045008.
  • 42. Nowacka M, Modrzejewska-Sikorska A, Chrzanowski Ł, Ambrożewicz D, Rozmanowski T, Myszka K, Czaczyk K, Bula K, Jesionowski T. Electrokinetic and bioactive properties of CuO∙SiO2 oxide composites. Bioelectrochemistry 2012; 87: 50–57.
  • 43. Berendjchi A, Khajavi R, Yazdanshenas ME. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper, Nanoscale Research Letters Journal 2011; 6: 594-602.
  • 44. Maniprasad P, Santra S. Novel Copper (Cu) Loaded Core–Shell Silica Nanoparticles with Improved Cu Bioavailability: Synthesis, Characterization and Study of Antibacterial Properties, Journal of Biomedical Nanotechnology 2012; 8: 558-566.
  • 45. Young M,and Santra S. Copper (Cu)−Silica Nanocomposite Containing Valence-Engineered Cu: A New Strategy for Improving the Antimicrobial Efcacy of Cu Biocides, Journal of Agricultural and Food Chemistry 2014; 62: 6043–6052.
  • 46. Varghese, S., S.O. El Fakhri, D.W Sheel, P. Sheel, F.J.E. Bolton, and H.A Foster. 2013. Antimicrobial activity of novel nanostructured Cu-SiO2 coatings prepared by chemical vapour deposition against hospital related pathogens. AMB Express Magazine, 3: 53-61.
  • 47. Grumezescu V, Chifriuc CM, Holban AM, Stoica P, Grumezescu AM, Voicu G, Socol G, Huang KS, Bleotu C, Radulescu R. Antimicrobial and Biocombatibility Assay of Newly Fabricated Materials Based Copper or Zinc Alginate and SiO2 Network. Digest Journal of Nanomaterials and Biostructures 2013; 8: 869-876.
  • 48. Esteban-Cubillo A, Pecharroma´n C, Aguilar E, Santarén J, Moya JS. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. The Journal of Materials Science 2006; 41: 5208-5212.
  • 49. Kalaivani S, Singh RK, Ganesan V, Kannan S. Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal. Journal of Materials Chemistry B 2014; 2: 846-858.
  • 50. Kar S, Bagchi B, Kundu B, Bhandary S, Basu R, Nandy P, Das S. Synthesis and characterization of Cu/Ag nanoparticle loaded mullite nanocomposite system: A potential candidate for antimicrobial and therapeutic applications. Biochimica et Biophysica Acta 2014; 1840: 3264-3276.
  • 51. Lin J-H, Chen A-P, Li T-T, Lin M-C, Lou C-W, Antibacterial behavior and physical properties of silver nanoparticle-doped ecofriendly nonwoven fabrics, Cellulose 2014; 21:1957–1964.
  • 52. Thebault P, Jouenne T, Antibacterial coatings, FORMATEX 2015; 483-489.
  • 53. Kurtycz P, Karwowska E, Ciach T, Olszyna A, Kunicki A, Biodegradable Polylactide (PLA) Fiber Mats Containing Al2O3-Ag Nanopowder Prepared by Electrospinning Technique - Antibacterial Properties, Fibers and Polymers 2013, 14: 1248-1253.
  • 54. Gutarowska B, Skóra J, Nowak E, Łysiak I, Wdówka M, Antimicrobial Activity and Filtration Efectiveness of Nonwovens with Sanitized for Respiratory Protective Equipment, Fibres and Textiles in Eastern Europe 2014; 22, 3(105): 120-125.
  • 55. Majchrzycka K, Brochocka A, Brycki B, Biocidal Agent for Modifcation of Poly(lactic acid) High-efciency Filtering Nonwovens, Fibres and Textiles in Eastern Europe 2015; 23, 4(112): 88-95.
  • 56. Gyawali R, Ibrahim SA. Synergistic effect of copper and lactic acid against Salmonella and Escherichia coli O157:H7: A review. Emir. J. Food Agric. 2012; 24: 01-11.
  • 57. Núñez L, D’Aquino M, Chirife J, Antifun-gal properties of clove oil (Eugenia caryophylata) in sugar solution, Brazilian J. Microbiol. 2001; 32: 123-126 (2001).
  • 58. Chirife J, Herszage L, Joseph A, Bozzini JP, Leardini N, Kohn ES. In Vitro Antibacterial Activity of Concentrated Polyethylene Glycol 400 Solutions. Antimicrobial Agents and Chemotheraphy 1983; 24: 409-412.
  • 59. Chieng BW, Ibrahim NA, Yunus WMZW, Hussein MZ, Plasticized Poly(lactic acid) with Low Molecular Weight Poly(ethylene glycol): Mechanical, Thermal, and Morphology Properties, J. Appl. Polym. Sci. 2013; 130: 4576–4580.
  • 60. Chan RTH, Marcal H, Russell RA, Holden PJ, Foster LJR, Application of Polyethylene Glycol to Promote Cellular Biocompatibility of Polyhydroxybutyrate Films, Intern. J. Polym. Sci. 2011; Article ID 473045.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af191a61-d1ef-47a9-8478-e62d715cd11e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.