Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sudden cardiac death (SCD) is a complex issue that may occur in population groups with either known or unknown cardiovascular disease (CVD). Given the complex nature of SCD, the discovery of a suitable biomarker will prove essential in identifying individuals at risk of SCD, while discriminating it from patients with other cardiac pathologies as well as healthy individuals. Thus, this study aimed to develop an efficient approach to support a better comprehension of heart rate variability (HRV) as a predictive biomarker to identify SCD patients at an early stage. The present study proposed a novel multi-class classification approach using signal processing methods of HRV to predict SCD 10 min before its occurrence. The developed algorithm was qualitatively and quantitatively analyzed in terms of discriminating SCD patients from patients of heart failure and normal people. A total of 51 HRV signals of all three classes obtained from PhysioBank were processed to extract 32 features in each subject. The optimal feature selection was performed by a hybrid approach of sequential feature selection-random under sampling boosting algorithms. Multi-class classifiers, namely decision tree, support vector machine, and k-nearest neighbors were used for classification. An average classification accuracy of SCD prediction 10 min before occurrence was obtained as 83.33%. Therefore, this study suggests a new efficient approach for the early-stage prediction of SCD that is considerably different from that reported in the literature to date. However, to generalize the findings, the algorithm needs to be tested for a larger population group.
Wydawca
Czasopismo
Rocznik
Tom
Strony
586--598
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
- Kurukshetra University, Haryana, India
autor
- Kurukshetra University, Haryana, India
autor
- J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, India
Bibliografia
- [1] Wong CX, Brown A, Lau DH, Chugh SS, Albert CM, Kalman JM, et al. Epidemiology of sudden cardiac death: global and regional perspectives. Heart Lung Circ 2019;28:6–14. http://dx.doi.org/10.1016/j.hlc.2018.08.026.
- [2] Abtahi D, Kpaeyeh JAG, Gold MR. Risk stratification of sudden cardiac death: a multi-racial perspective. Int J Hear Rhythm 2016;1:24. http://dx.doi.org/10.4103/2352-4197.191479.
- [3] Chugh SS. Early identification of risk factors for sudden cardiac death. Nat Rev Cardiol 2010;7:318–26. http://dx.doi.org/10.1038/nrcardio.2010.52.
- [4] Fishman GI, Chugh SS, DiMarco JP, Albert CM, Anderson ME, Bonow RO, et al. Sudden cardiac death prediction and prevention report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation 2010;122:2335–48. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.976092.
- [5] Wellens HJJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, et al. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J 2014;35:1642–51. http://dx.doi.org/10.1093/eurheartj/ehu176.
- [6] Ragupathi L, Pavri BB. Tools for risk stratification of sudden cardiac death: a review of the literature in different patient populations. Indian Heart J 2014;66:S71–81. http://dx.doi.org/10.1016/j.ihj.2013.12.035.
- [7] Chugh SS, Reinier K, Teodorescu C, Evanado A, Al Samara M, Mariani R, et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis 2008;51:213–28. http://dx.doi.org/10.1016/j.pcad.2008.06.003.
- [8] Masarone D, Limongelli G, Ammendola E, Verrengia M, Gravino R, Pacileo G. Risk stratification of sudden cardiac death in patients with heart failure: an update. J Clin Med 2018;7:436. http://dx.doi.org/10.3390/jcm7110436.
- [9] Palacios-rubio J, Marina-breysse M, Quintanilla JG, Gil-perdomo JM, Juárez-fernández M, Garcia-gonzalez I, et al. Early prognostic value of an Algorithm based on spectral Variables of Ventricular fibrillAtion from the EKG of patients with suddEn cardiac death: a multicentre observational study (AWAKE). Arch Cardiol Mex 2018;88:460–7. http://dx.doi.org/10.1016/j.acmx.2018.05.003.
- [10] Filgueiras-rama D, Calvo CJ, Ruiz-cantador J, Armada E, Peinado R, Quintanilla G, et al. Spectral analysis-based risk score enables early prediction of mortality and cerebral performance in patients undergoing therapeutic hypothermia for ventricular fibrillation and comatose status. Int J Cardiol 2015;250–8. http://dx.doi.org/10.1016/j.ijcard.2015.03.074.Spectral.
- [11] Hill AP, Perry MD, Abi-Gerges N, Couderc JP, Fermini B, Hancox JC, et al. Computational cardiology and risk stratification for sudden cardiac death: one of the grand challenges for cardiology in the 21st century. J Physiol 2016;594:6893–908. http://dx.doi.org/10.1113/JP272015.
- [12] Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, et al. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY) 2018;10:166–77.
- [13] Shadman R, Poole JE, Dardas TF, Mozaffarian D, Cleland JGF, Swedberg K, et al. A novel method to predict the proportional risk of sudden cardiac death in heart failure: derivation of the Seattle Proportional Risk Model. Hear Rhythm 2015. http://dx.doi.org/10.1016/j.hrthm.2015.06.039.
- [14] Mph BMB, Ms HN, Goldberger JJ, Mehrotra S, Scm DML. A simple community-based risk prediction score for sudden cardiac death. Am J Med 2017. http://dx.doi.org/10.1016/j.amjmed.2017.12.002.
- [15] Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability standards of measurement, physiological interpretation, and clinical use. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Eur Heart J 1996;17:354–81. http://dx.doi.org/10.1161/01.CIR.93.5.1043.
- [16] Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure; results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation 1998;98:1510–6.
- [17] Tsuji H, Larson MG, Venditti FJ, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. Circulation 1996;94:2850–5.
- [18] Goldberger JJ, Cain ME, Hohnloser SH, Kadish AH, Knight BP, Lauer MS, et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society Scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death. Circulation 2008;118:1497–518. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.189375.
- [19] Hillebrand S, Gast KB, Mutsert D, Swenne CA, Jukema JW, Middeldorp S, et al. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose–response meta-regression. Europace 2013;15:742–9. http://dx.doi.org/10.1093/europace/eus341.
- [20] Tsuji H, Venditti FJ, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortalit risk in an elderly cohort. The Framingham Heart Study. Circulation 1994;90:878–83.
- [21] Panday KR, Panday DR. Heart rate variability (HRV). J Clin Exp Cardiol 2018;9:583. http://dx.doi.org/10.4172/2155-9880.1000583.
- [22] Huikuri HV, Makikallio T, Airaksinen KEJ, Mitrani R, Castellanos A, Myerburg RJ. Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol 1999;34:1878–83. http://dx.doi.org/10.1016/S0735-1097(99)00468-4.
- [23] Mccraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Heal Med 2015;4:46–61. http://dx.doi.org/10.7453/gahmj.2014.073.
- [24] Kazmi SZH, Zhang H, Aziz W, Monfredi O, Abbas SA, Shah SA, et al. Inverse correlation between heart rate variability and heart rate demonstrated by linear and nonlinear analysis. PLoS One 2016;11:e01575. http://dx.doi.org/10.1371/journal.pone.0157557.
- [25] Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Heal 2017;5:258. http://dx.doi.org/10.3389/fpubh.2017.00258.
- [26] Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. PACE 2010;33:1407–17. http://dx.doi.org/10.1111/j.1540-8159.2010.02841.x.
- [27] Murukesan L, Murugappan M, Iqbal M, Saravanan K. Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J Med Imaging Heal Informatics 2014;4:521–32. http://dx.doi.org/10.1166/jmihi.2014.1287.
- [28] Fujita H, Acharya UR, Sudarshan VK, Ghista DN, Sree SV, Eugene LWJ, et al. Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl Soft Comput J 2016. http://dx.doi.org/10.1016/j.asoc.2016.02.049.
- [29] Ebrahimzadeh E, Manuchehri MS, Amoozegar S, Araabi BN. A time local subset feature selection for prediction of sudden cardiac death from ECG signal. Med Biol Eng Comput 2018;56:1253–70. http://dx.doi.org/10.1007/s11517-017-1764-1.
- [30] Khazaei M, Raeisi K, Goshvarpour A, Ahmadzadeh M. Early detection of sudden cardiac death using nonlinear analysis of heart rate variability. Biocybern Biomed Eng 2018. http://dx.doi.org/10.1016/j.bbe.2018.06.003.
- [31] Devi R, Tyagi HK, Kumar D. Recurrence plot features of RR-interval signal for early stage mortality identification in sudden cardiac death patients. In: Krishna DCR, Dutta DM, Kumar DR, editors. Springer LNNS Ser. Int. Conf. Commun. Comput. Netw.. Chandigarh, India: Springer Nature Singapore Pte Ltd.; 2018. p. 1–10.
- [32] Reinhall P, Poole JE, Anderson J, Lee KL, Bardy GH. SCD-HeFT: use of RR interval statistics for long-term risk stratification for arrhythmic sudden cardiac death. Hear Rhythm 2015;12:2058–66. http://dx.doi.org/10.1016/j.hrthm.2015.06.030.
- [33] Aguiar-Conraria L, Soares MJ. The continuous wavelet transform: a primer; 2011, NIPE WP 16/2011.
- [34] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101:e215–20.
- [35] Lippman N, Stein KM, Lerman BB. Comparison of methods for removal of ectopy in measurement of heart rate variability. Am j Physiol 1994;267:H411–8. http://dx.doi.org/10.1152/ajpheart.1994.267.1.H411.
- [36] Clifford GD, Tarassenko L. Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans Biomed Eng 2005;52:630–8. http://dx.doi.org/10.1109/TBME.2005.844028.
- [37] Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE. Effects of trends on detrended fluctuation analysis. Phys Rev E 2001;64:1–22.
- [38] Thayer JF, Sollers JJ, Ruiz-padial E, Vila J. Estimating respiratory frequency from autoregressive spectral analysis of heart period. IEEE Eng Med Biol Mag 2002;41–5. http://dx.doi.org/10.1109/MEMB.2002.1032638.
- [39] Kamen PW, TA M. Application of the Poincare plot to heart rate variability: a new measure of functional status in heart failure. Aust NZ J Med 1995;25:18–26.
- [40] Heneghan C, McDarby G. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys Rev E 2000;62:6103– 10. http://dx.doi.org/10.1103/PhysRevE.62.6103.
- [41] Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst Man Cybern A Syst Humans 2010;40:185–97.
- [42] Witten IH, Frank E, Hall MA. Data mining practical machine learning tools and techniques. 3rd ed. United States: Elsevier Inc.; 2011.
- [43] Powers DMW. Evaluation: from precision, recall and F-measure to Roc, informedness, markedness & correlation. J Mach Learn Technol 2011;2:37–63. doi: 10.1.1.214.9232.
- [44] Mathews SM, Kambhamettu C, Barner KE. A novel application of deep learning for single-lead ECG classification. Comput Biol Med 2018;99:53–62. http://dx.doi.org/10.1016/j.compbiomed.2018.05.013.
- [45] Lui HW, Chow KL. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Informatics Med Unlocked 2018;13:26–33. http://dx.doi.org/10.1016/j.imu.2018.08.002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af138afa-c597-4fde-aba4-153f2abe597b