PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Noise Reduction in Radon Monitoring Data Using Kalman Filter and Application of Results in Earthquake Precursory Process Research

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monitoring the concentration of radon gas is an established method for geophysical analyses and research, particularly in earthquake studies. A continuous radon monitoring station was implemented in Jooshan hotspring, Kerman province, south east Iran. The location was carefully chosen as a widely reported earthquake-prone zone. A common issue during monitoring of radon gas concentration is the possibility of noise disturbance by different environmental and instrumental parameters. A systematic mathematical analysis aiming at reducing such noises from data is reported here; for the first time, the Kalman filter (KF) has been used for radon gas concentration monitoring. The filtering is incorporated based on several seismic parameters of the area under study. A novel anomaly defined as “radon concentration spike crossing” is also introduced and successfully used in the study. Furthermore, for the first time, a mathematical pattern of a relationship between the radius of potential precursory phenomena and the distance between epicenter and the monitoring station is reported and statistically analyzed.
Czasopismo
Rocznik
Strony
329--351
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Kerman Graduate University of Technology, Geophysics Department, Kerman, Iran
  • Kerman Graduate University of Technology, Electrical Engineering Department, Kerman, Iran
Bibliografia
  • [1] Ali Yalım, H., A. Sandıkcıoğlu, O. Ertuğrul, and A. Yıldız (2012), Determination of the relationship between radon anomalies and earthquakes in well waters on the Akşehir-Simav Fault System in Afyonkarahisar province, Turkey, J. Environ. Radioactiv. 110, 7-12, DOI: 10.1016/j.jenvrad.2012.01.015.
  • [2] Belouchrani, A., K. Abed-Meraim, J.-F. Cardoso, and E. Moulines (1997), A blind source separation technique using second-order statistics, IEEE Trans. Signal Process. 45, 2, 434-444, DOI: 10.1109/78.554307.
  • [3] Berberian, M., J.A. Jackson, M. Ghorashi, and M.H. Kadjar (1984), Field and teleseismic observations of the 1981 Golbaf–Sirch earthquakes in SE Iran, Geophys. J. Roy. Astr. Soc. 77, 3, 809-838, DOI: 10.1111/j.1365-246X.1984.tb02223.x.
  • [4] Berberian, M., J.A. Jackson, E. Fielding, B.E. Parsons, K. Priestley, M. Qorashi, M. Talebian, R. Walker, T.J. Wright, and C. Baker (2001), The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: Re‐rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone, Geophys. J. Int. 146, 2, 371-398, DOI: 10.1046/j.1365-246x.2001.01459.x.
  • [5] Brabec, M., and K. Jílek (2007), State-space dynamic model for estimation of radon entry rate, based on Kalman filtering, J. Environ. Radioactiv. 98, 3, 285-297, DOI: 10.1016/j.jenvrad.2007.05.006.
  • [6] Brailean, J.C., R.P. Kleihorst, S. Efstratiadis, A.K. Katsaggelos, and R.L. Lagendijk (1995), Noise reduction filters for dynamic image sequences: a review, Proc. IEEE 83, 9, 1272-1292, DOI: 10.1109/5.406412.
  • [7] Cichocki, A., and S.-I. Amari (2002), Adaptive Blind Signal and Image Processing. Learning Algorithms and Applications, John Wiley & Sons, Chichester.
  • [8] Dobrovolsky, I.P., S.I. Zubkov, and V.I. Miachkin (1979), Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 5, 1025-1044, DOI: 10.1007/BF00876083.
  • [9] Evensen, G. (2003), The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam. 53, 4, 343-367, DOI: 10.1007/s10236-003-0036-9.
  • [10] Finkelstein, M., S. Brenner, L. Eppelbaum, and E. Ne’Eman (1998), Identification of anomalous radon concentrations due to geodynamic processes by elimination of Rn variations caused by other factors, Geophys. J. Int. 133, 2, 407-412, DOI: 10.1046/j.1365-246X.1998.00502.x.
  • [11] Fujimoto, M., and Y.Ariki (2000), Noisy speech recognition using noise reduction method based on Kalman filter. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP’2000, 5-9 June 2000, Istanbul, Turkey, Vol. 3, 1727-1730, DOI: 10.1109/icassp. 2000.862085.
  • [12] Hashemi, S.M., A. Negarestani, M. Namvaran, and S.M. Musavi Nasab (2013), An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes, J. Radioanal. Nucl. Chem. 295, 3, 2249-2262, DOI: 10.1007/s10967-012-2310-0.
  • [13] Hauksson, E. (1981), Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis, J. Geophys. Res. 86, B10, 9397-9410, DOI: 10.1029/JB086iB10p09397.
  • [14] Hyvärinen, A., and E. Oja (2000), Independent component analysis: algorithms and applications, Neural Networks 13, 4-5, 411-430, DOI: 10.1016/S0893-6080(00)00026-5.
  • [15] Kleinbauer, R. (2004), Kalman filtering implementation with Matlab, Study Report, Universität Stuttgart, Institute of Geodesy.
  • [16] Kownacki, C. (2011), Optimization approach to adapt Kalman filters for the realtime application of accelerometer and gyroscope signals’ filtering, Digit. Signal Process. 21, 1, 131-140, DOI: 10.1016/j.dsp.2010.09.001.
  • [17] Kuo, T., K. Fan, H. Kuochen, Y. Han, H. Chu, and Y. Lee (2006), Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake, J. Environ. Radioactiv. 88, 1, 101-106, DOI: 10.1016/j.jenvrad.2006.01.005.
  • [18] Lee, T.-W., M.S. Lewicki, M. Girolami, and T.J. Sejnowski (1999), Blind source separation of more sources than mixtures using overcomplete representations, IEEE Signal Process. Lett. 6, 4, 87-90, DOI: 10.1109/97.752062.
  • [19] Leśniak, A., T. Danek, and M. Wojdyła (2009), Application of Kalman filter to noise reduction in multichannel data, Schedae Informaticae 17, 18, 63-73, DOI:10.2478/v10149-010-0004-3.
  • [20] Negarestani, A., S. Setayeshi, M. Ghannadi-Maragheh, and B. Akashe (2002), Layered neural networks based analysis of radon concentration and environmental parameters in earthquake prediction, J. Environ. Radioactiv. 62, 3, 225-233, DOI: 10.1016/S0265-931X(01)00165-5.
  • [21] Ramola, R.C. (2010), Relation between spring water radon anomalies and seismic activity in Garhwal Himalaya, Acta Geophys. 58, 5, 814-827, DOI:10.2478/s11600-009-0047-0.
  • [22] Richon, P., F. Perrier, J.-C. Sabroux, M. Trique, C. Ferry, V. Voisin, and E. Pili (2004), Spatial and time variations of radon-222 concentration in the atmosphere of a dead-end horizontal tunnel, J. Environ. Radioactiv. 78, 2, 179-198, DOI:10.1016/j.jenvrad.2004.05.001.
  • [23] Roesser, R.P. (1975), A discrete state-space model for linear image processing, IEEE Trans. Automat. Contr. 20, 1, 1-10, DOI: 10.1109/tac.1975.1100844.
  • [24] Seyis, C., S. İnan, and T. Streil (2010), Ground and indoor radon measurements in a geothermal area, Acta Geophys. 58, 5, 939-946, DOI: 10.2478/s11600-010-0012-y.
  • [25] Simon, D. (2001), Kalman filtering, Embedded Sys. Program. 14, 6, 72-79.
  • [26] Simon, D., and T.L. Chia (2002), Kalman filtering with state equality constraints, IEEE Trans. Aero. Elec. Sys. 38, 1, 128-136, DOI: 10.1109/7.993234.
  • [27] Spitzer, F. (2001), Principles of Random Walk, 2nd ed., Graduate Texts in Mathematics, Vol. 34, Springer, New York.
  • [28] Tsunomori, F., and T. Kuo (2010), A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan, Radiat. Meas. 45, 1, 139-142, DOI:10.1016/j.radmeas.2009.08.003.
  • [29] Wakita, H., G. Igarashi, and K. Notsu (1991), An anomalous radon decrease in groundwater prior to an M6.0 earthquake: A possible precursor?, Geophys. Res. Lett. 18, 4, 629-632, DOI: 10.1029/91GL00824.
  • [30] Zhang, K., and A. Hyvärinen (2011), A general linear non-Gaussian state-space model: Identifiability, identification, and applications. In: C.-N. Hsu and W.S. Lee (eds.), JMLR Workshop and Conference Proc., Asian Conf. on Machine Learning 2011, Tokyo, Japan, 113-128.
  • [31] Zibulevsky, M., and B.A. Pearlmutter (2001), Blind source separation by sparse decomposition in a signal dictionary, Neural Comput. 13, 4, 863-882, DOI:10.1162/089976601300014385.
  • [32] Zmazek, B., M. Živčić, L. Todorovski, S. Džeroski, J. Vaupotič, and I. Kobal (2005), Radon in soil gas: How to identify anomalies caused by earthquakes, Appl. Geochem. 20 6, 1106-1119, DOI: 10.1016/j.apgeochem. 2005.01.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af105ea5-982f-4e4f-a424-dc8608c7ead4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.