Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
Abstrakty
Current advances in type-II superlattice (T2SL) research at Fraunhofer IAF are elaborated on in this paper. First, the use of metastructures for quantum efficiency (QE) enhancement in the longwave infrared (LWIR) is presented. Finite element modelling results are reported on that suggest a potential for doubling of the QE at certain wavelengths with the investigated device structure. Next, characterisation results of midwave infrared (MIWR) InAs/InAsSb T2SL nBn detectors are shown. The low, diffusion-limited dark current above 120 K and a QE of 60% are comparable to the state-of-the-art. Finally, groundwork for InAs/GaSb T2SL MWIR/LWIR dual-band detector arrays based on a back-to-back heterojunction diode device concept is presented. The dry etching technology allows for steep etch trenches and full pixel reticulation with a fill factor of about 70% at 12 μm pitch. The detector characterisation at 77 K and ±250 mV bias demonstrates the bias-switchable operation mode with dark current densities of 6.1·10ˉ⁹ A/cm² in the MWIR and 5.3·10ˉ⁴ A/cm² in the LWIR.
Wydawca
Czasopismo
Rocznik
Strony
art. no. e144553
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
autor
- Fraunhofer Institute for Solid State Physics IAF, Tullastraße 72, 79108 Freiburg, Germany
Bibliografia
- [1] Ting, D. Z. et al. Antimonide type-II superlattice barrier infrared detectors. Proc. SPIE 10177, 101770N (2017). https://doi.org/10.1117/12.2266263
- [2] Hill, C. J. et al. The VISTA industrial consortium: structure and accomplishments of a government-industry development partnership. Proc. SPIE 12107, 121070P (2022). https://doi.org/10.1117/12.2618983
- [3] Fuchs, F. et al. High performance InAs/Ga1-xInxSb superlattice infrared photodiodes. Appl. Phys. Lett. 71, 3251 (1997). https://doi.org/10.1063/1.120551
- [4] Herres, N. et al. Effect of interfacial bonding on the structural and vibrational properties of InAs/GaSb superlattices. Phys. Rev. B 53, 15688 (1996). https://doi.org/10.1103/PhysRevB.53.15688
- [5] Rehm, R. et al. Dual-colour thermal imaging with InAs/GaSb superlattices in mid-wavelength infrared spectral range. Electron. Lett. 42, 577-578 (2006). https://doi.org/10.1049/el:20060878
- [6] Choi, K.-K. Metastructures for VLWIR SLS detectors. Proc. SPIE 11407, 114070K (2020). https://doi.org/10.1117/12.2555954
- [7] Choi, K.-K. et al. Electromagnetic modeling of quantum well infrared photodetectors. IEEE J. Quantum. Electron. 48, 384-393 (2012). https://doi.org/10.1109/JQE.2011.2175706
- [8] Choi, K.-K. et al. Small pitch resonator-QWIP detectors and arrays. Infrared Phys. Technol. 94, 118-125 (2018). https://doi.org/10.1016/j.infrared.2018.09.006
- [9] Gunapala, S. D. et al. T2SL meta-surfaced digital focal plane arrays for Earth remote sensing applications. Proc. SPIE 11129, 111290C 2019. https://doi.org/10.1117/12.2533477
- [10] Steenbergen, E. et al. Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb. Appl. Phys. Lett. 99, 251110 (2011). https://doi.org/10.1063/1.3671398
- [11] Lackner, D. et al. Growth of InAsSb/InAs MQWs on GaSb for mid-IR photodetector applications. J. Cryst. Growth 311, 3563-3567 (2009). https://doi.org/10.1016/j.jcrysgro.2009.04.027
- [12] Lackner, Di. et al. Strain balanced InAs/InAsSb superlattice structures with optical emission to 10 μm. Appl. Phys. Lett. 95, 081906 (2009). https://doi.org/10.1063/1.3216041
- [13] Kim, H.S. et al. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-II superlattices. Appl. Phys. Lett. 101, 161114 (2012). https://doi.org/10.1063/1.4760260
- [14] Hoang, A. M., Chen, G., Chevallier, R., Haddadi, A. & Razeghi, M. High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection. Appl. Phys. Lett. 104, 251105 (2014). https://doi.org/10.1063/1.4884947
- [15] Haddadi, A. M., Chen, G., Chevallier, R., Hoang, A. M. & Razeghi, M. InAs/InAs1-x Sbx type-II superlattices for high performance long wavelength infrared detection. Appl. Phys. Lett. 105, 121104 (2014). https://doi.org/10.1063/1.4896271
- [16] Maimon, S. & Wicks, G. W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
- [17] Ting, D. et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array. Appl. Phys. Lett. 113, 021101 (2018). https://doi.org/10.1063/1.5033338
- [18] Soibel, A. et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl. Phys. Lett. 114, 161103 (2019). https://doi.org/10.1063/1.5092342
- [19] Bouschet, M. et al. Influence of pixel etching on electrical and electro-optical performances of a Ga-free InAs/InAsSb T2SL barrier photodetector for mid-wave infrared imaging. Photonics 8, 194 (2021). https://doi.org/10.3390/photonics8060194
- [20] Klipstein, P. C. XBnn and XBpp infrared detectors. J. Cryst. Growth 425, 351-356 (2015). https://doi.org/10.1016/j.jcrysgro.2015.02.075
- [21] Delmas, M. et al. HOT SWaP and HD detectors based on Type-II superlattices at IRnova. Proc. SPIE 12107, 121070R (2022). https://doi.org/10.1117/12.2618752
- [22] Tennant, W. E. ‘‘Rule 07’’ Revisited: still a good heuristic predictor of p/n HgCdTe photodiode performance? J. Electron. Mater. 39, 1030-1035 (2010). https://doi.org/10.1007/s11664-010-1084-9
- [23] Haddadi, A., Chevallier, R., Chen, G., Hoang, A. M. & Razeghi, M. Bias-selectable dual-band mid-/long- wavelength infrared photodetectors based on InAs/InAs1-x Sbx type-II superlattices. Appl. Phys. Lett. 106, 011104 (2015). https://doi.org/10.1063/1.4905565
- [24] Plis, E. et al. Dual-band pBp detectors based on InAs/GaSb strained layer superlattices. Infrared Phys. Technol. 59, 28–31 (2013). https://doi.org/10.1016/j.infrared.2012.12.005
- [25] Ariyawansa, G. et al. Design and modeling of InAs/GaSb type II superlattice based dual-band infrared detectors. J. Appl. Phys. 111, 073107 (2012). https://doi.org/10.1063/1.3702581
- [26] Gurga, A. R., Nosho, B. Z., Terterian, S., Wang, S. & Rajavel, R. D. Dual-band MWIR/LWIR focal plane arrays based on III-V strained-layer superlattices. Proc. SPIE 10624, 1062400 (2018). https://doi.org/10.1117/12.2309720
- [27] Rehm, R. et al. Type-II superlattice infrared detector technology at Fraunhofer IAF. Proc. SPIE 9819, 98190X (2016). https://doi.org/10.1117/12.2223887
- [28] Schmidt, J., Rutz, F., Wörl, A., Daumer, V. & Rehm, R. Low dark current in mid-infrared type-II superlattice heterojunction photodiodes. Infrared Phys. Technol. 85, 378-81 (2017). https://doi.org/10.1016/j.infrared.2017.08.001
- [29] Huang, E., Nguyen, B.-M., Hoffman, D., Delaunay, P.-Y. & Razeghi, M. Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays. Proc. SPIE 7222, 72220Z (2009). https://doi.org/10.1117/12.810030
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af0d9f0f-b84c-42db-9e3b-134a54f7520f