PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semi-Hyers-Ulam-Rassias stability for an integro-differential equation of order 𝓃

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Laplace transform method is applied in this article to study the semi-Hyers-Ulam-Rassias stability of a Volterra integro-differential equation of order n, with convolution-type kernel. This kind of stability extends the original Hyers-Ulam stability whose study originated in 1940. A general integral equation is formulated first, and then some particular cases (polynomial function and exponential function) for the function from the kernel are considered.
Wydawca
Rocznik
Strony
art. no. 20220198
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania
  • Department of Mathematics, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114, Cluj-Napoca, Romania
Bibliografia
  • [1] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
  • [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224, DOI: https://doi.org/10.1073/pnas.27.4.222.
  • [3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hambg. 62 (1992), 59–64, DOI: https://doi.org/10.1007/BF02941618.
  • [4] T. Trif, On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604–616, DOI: https://doi.org/10.1016/S0022-247X(02)00181-6.
  • [5] Y.-H. Lee, S. Jung and M. Th. Rassias. Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018), no. 1, 43–61, DOI: https://doi.org/10.7153/jmi-2018-12-04.
  • [6] E. Elqorachi and M. Th. Rassias, Generalized Hyers-Ulam stability of trigonometric functional equations, Mathematics 6 (2018), no. 5, 83, DOI: https://doi.org/10.3390/math6050083.
  • [7] S.-M. Jung, K. S. Lee, M. Th. Rassias, and S. M. Yang, Approximation properties of solutions of a mean value-type functional inequality, II, Mathematics 8 (2020), 1299, DOI: https://doi.org/10.3390/math8081299.
  • [8] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
  • [9] J. Brzdek, D. Popa, I. Rasa, and B. Xu, Ulam Stability of Operators, Elsevier, Amsterdam, The Netherlands, 2018.
  • [10] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat. 13 (2013), 259–270.
  • [11] C. Alsina and R. Ger, On some inequalities and stability results related to exponential function, J. Inequal. Appl. 2 (1998), 373–380.
  • [12] D. S. Cimpean and D. Popa, On the stability of the linear differential equation of higher order with constant coefficients, Appl. Math. Comput. 217 (2010), 4141–4146, DOI: https://doi.org/10.1016/j.amc.2010.09.062.
  • [13] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. 311 (2005), 139–146, DOI: https://doi.org/10.1016/j.jmaa.2005.02.025.
  • [14] D. Marian, S. A. Ciplea, and N. Lungu, On Ulam-Hyers stability for a system of partial differential equations of first order, Symmetry 12 (2020), no. 7, 1060, DOI: https://doi.org/10.3390/sym12071060.
  • [15] D. Otrocol, Ulam stabilities of differential equation with abstract Volterra operator in a Banach space, Nonlinear Funct. Anal. Appl. 15 (2010), no. 4, 613–619.
  • [16] D. Popa and I. Rasa, Hyers-Ulam stability of the linear differential operator with non-constant coefficients, Appl. Math. Comput. 219 (2012), 1562–1568, DOI: https://doi.org/10.1016/j.amc.2012.07.056.
  • [17] S. E. Takahasi, H. Takagi, T. Miura and S. Miyajima, The Hyers-Ulam stability constant of first order linear differential operators, J. Math. Anal. Appl. 296 (2004), 403–409, DOI: https://doi.org/10.1016/j.jmaa.2003.12.044.
  • [18] M. R. Abdollahpour and M. Th Rassias, Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math. 93 (2019), no. 4, 691–698, DOI: https://doi.org/10.1007/s00010-018-0602-3.
  • [19] M. R. Abdollahpour, R. Aghayari, and M. Th Rassias, Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl. 437 (2016), 605–612, DOI: https://doi.org/10.1016/j.jmaa.2016.01.024.
  • [20] A. Prastaro and Th. M. Rassias, Ulam stability in geometry of PDE’s, Nonlinear Funct. Anal. Appl. 8 (2003), no. 2, 259–278.
  • [21] S.-M. Jung, Hyers-Ulam stability of linear partial differential equations of first order, Appl. Math. Lett. 22 (2009), 70–74, DOI: https://doi.org/10.1016/j.aml.2008.02.006.
  • [22] N. Lungu and S. Ciplea, Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations, Carpatian J. Math. 31 (2015), no. 2, 233–240.
  • [23] N. Lungu and D. Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl. 385 (2012), 86–91, DOI: https://doi.org/10.1016/j.jmaa.2011.06.025.
  • [24] D. Marian, Semi-Hyers-Ulam-Rassias stability of the convection partial differential equation via Laplace transform, Mathematics 9 (2021), 2980, DOI: https://doi.org/10.3390/math9222980.
  • [25] A. K. Tripathy, Hyers-Ulam Stability of Ordinary Differential Equations, Taylor and Francis, Boca Raton, 2021.
  • [26] L. Cadariu, The generalized Hyers-Ulam stability for a class of the Volterra nonlinear integral equations, Sci. Bull. Politehnica Univ. Timis. Trans. Math. Phys. 56 (2011), 30–38.
  • [27] L. P. Castro and A. M. Simões, Different types of Hyers-Ulam-Rassias stabilities for a class of integro-differential equations, Filomat 31 (2017), 5379–5390, DOI: https://doi.org/10.2298/FIL1717379C.
  • [28] L. P. Castro and A. M. Simões, Hyers-Ulam-Rassias stability of nonlinear integral equations through the Bielecki metric, Math. Meth. Appl. Sci. 41 (2018), no. 17, 7367–7383, DOI: https://doi.org/10.1002/mma.4857.
  • [29] V. Ilea and D. Otrocol, Existence and uniqueness of the solution for an integral equation with supremum, via w-distances, Symmetry 12 (2020), no. 9, 1554, DOI: https://doi.org/10.3390/sym12091554.
  • [30] D. Marian, S. A. Ciplea, and N. Lungu, On a functional integral equation, Symmetry 13 (2021), no. 8, 1321, DOI: https://doi.org/10.3390/sym13081321.
  • [31] H. Rezaei, S.-M. Jung, and Th. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl. 403 (2013), 244–251, DOI: https://doi.org/10.1016/j.jmaa.2013.02.034.
  • [32] Q. Alqifiary and S-M. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Differ. Equ. 80 (2014), 1–11.
  • [33] E. Bicer and C. Tunc, On the Hyers-Ulam stability of Laguerre and Bessel equations by Laplace transform method, Nonlinear. Dyn. Syst. 17 (2017), no. 4, 340–346.
  • [34] R. Murali and A. Ponmana Selvan, Mittag-Leffler-Hyers-Ulam stability of a linear differential equation of first order using Laplace transforms, Canad. J. Appl. Math. 2 (2020), 47–59.
  • [35] Y. Shen and W. Chen, Laplace transform method for the Ulam stability of linear fractional differential equations with constant coefficients, Mediterr. J. Math. 14 (2017), 25, DOI: https://doi.org/10.1007/s00009-016-0835-0.
  • [36] D. Inoan and D. Marian, Semi-Hyers-Ulam-Rassias stability of a Volterra integro-differential equation of order I with a convolution type kernel via Laplace transform, Symmetry 13 (2021), no. 11, 2181, DOI: https://doi.org/10.3390/sym13112181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af0d7651-641e-4d90-879c-d186fe8b0469
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.