PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the Powder Consolidation Method Type on the Microstructure and Selected Properties of Al2O3-Cu-Ni Composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research is focused on the characterization of the composites from Al2O3-Cu-Ni system. Two methods of ceramic-metal composite forming were applied: uniaxial powder pressing and Pulse Plasma Sintering (PPS). To obtain the samples the powder mixtures containing 85 vol.% of Al2O3 and 15 vol.% of metal powders were used. Influence of the sintering process on microstructure and mechanical properties of the two series of the composites was analyzed in detail. The selected physical properties of samples were characterized by Archimedes immersion method. Vickers hardness and the fracture toughness of the composites was determined as well. The microstructure of the composites was characterized by XRD, SEM, EDX. Fractography investigation was carried out as well. Independently on composite production method Al2O3, Cu, Ni, and CuNi phases were revealed. Fractography investigation results revealed different character of fracture in dependence of fabrication method. Pulse Plasma Sintered samples were characterized by higher crack resistance and higher Vickers hardness in comparison to the specimens manufactured by uniaxial pressing.
Twórcy
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska Str., 02-507 Warsaw, Poland
autor
  • Military University of Technology, Faculty of Mechanical Engineering, Gen. W. Kaliskiego 2 Str., 00-908 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska Str., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska Str., 02-507 Warsaw, Poland
Bibliografia
  • [1] J. S. Moya, S. Lopez-Esteban, C. Pecharroman, Prog. Mater. Sci. 52 (7), 1017-1090 (2007), DOI: 10.1016/j.pmatsci.2006.09.003.
  • [2] P. D. Pastuszak, A. Muc, Key Eng. Mater. 542, 119-129 (2013), DOI: 10.4028/www.scientific.net/KEM.542.119.
  • [3] B. Zhu, Y. J. Cai, Int. J. Impact Eng. 133, 103340 (2019), DOI: 10.1016/j.ijimpeng.2019.103340.
  • [4] B. Haghpanah Jahromi, A. Ajdari, H. Nayeb-Hashemi, A. Vaziri, Compos. Struct. 92 (8), 1813-1822 (2010), DOI: 10.1016/j.compstruct.2010.01.019.
  • [5] L. K. Yang, P. Shen, R. F. Guo, Y. L. Li, Q. Ch. Jiang, Scr. Mater. 167, 101-104 (2019), DOI: 10.1016/j.scriptamat.2019.04.004.
  • [6] A. Smirnov, P. Peretyagin, J. F. Bartolomé, J. Eur. Ceram. Soc. 39 (12), 3491-3497, DOI: 10.1016/j.jeurceramsoc.2019.02.044.
  • [7] D. V. Praveen, D. R. Raju, M. V. J. Raju, Mater. Today: Proceedings, (2019), DOI: 10.1016/j.matpr.2019.05.392 (in-press).
  • [8] J. Zhao, The use of ceramic matrix composites for metal cutting applications, in: I.M. Low (Eds.), Advances in Ceramic Matrix Composites 2018, Elsevier (2018).
  • [9] S. Song, Z. Dong, C. Fernandez, Z. Wen, L. Lu, Mater. Lett. 236, 13-15 (2019), DOI: 10.1016/j.matlet.2018.10.059.
  • [10] X. Zhu, F. Kong, X. Ma, Ceram. Int. 45 (2), 1940-1945 (2019), DOI: 10.1016/j.ceramint.2018.10.086.
  • [11] J. R. Martinelli, F. F. Sene, Ceram. Int. 26 (3), 325-335 (2000), DOI: 10.1016/S0272-8842(99)00059-0.
  • [12] X. Zhang, T. Yu, J. Zhao, Inter. J. Mech. Sci. (2019), DOI: 10.1016/j.ijmecsci.2019.105314 (in press).
  • [13] J. Du, H. Zhang, Y. Geng, W. Ming, K. Liu, Ceram. Inter. 45 (15), 18155-18166 (2019), DOI: 10.1016/j.ceramint.2019.06.112.
  • [14] B. Mainzer, C. Lin, M. Frieß, R. Riedel, D. Koch, J. Eur. Ceram. Soc. (2019), DOI: 10.1016/j.jeurceramsoc.2019.10.049.
  • [15] P. Zhang, D. Jia, Z. Yang, B. Yang, G. Wang, Mater. Charact. 142, 59-67 (2018), DOI: 10.1016/j.matchar.2018.05.024.
  • [16] Y. Arai, R. Inoue, K. Goto, Y. Kogo, Ceram. Inter. 45 (12), 14481-14489 (2019), DOI: 10.1016/j.matchar.2018.05.024.
  • [17] S. V. Raj, Ceram. Inter. 45 (3), 3608-3619 (2019), DOI: 10.1016/j.ceramint.2018.11.021
  • [18] A. Fathy, F. Shehata, M. Abdelhameed, M. Elmahdy, Mater. Des. (1980-2015), 36, 100-107 (2012), DOI: 10.1016/j.matdes.2011.10.021.
  • [19] R. Ritasalo, X. W. Liua, O. Soderberg, A. Keski-Honkola, V. Pitkanen, S. P. Hannula, Procedia Eng. 10, 124-129 (2011), DOI: 10.1016/j.proeng.2011.04.023.
  • [20] Y. Shi, W. Chen, L. Dong, H. Li, Y. Fu, Ceram. Int. 44 (1), 57-64 (2018), DOI: 10.1016/j.ceramint.2017.09.062.
  • [21] M. Stratigaki, W. Pabst, V. Nečina, M. Hajíček, A. D. Gotsis, SN Appl Sci 1, 40, (2019) doi: 10.1007/s42452-018-0037-4.
  • [22] C. R. Raghavendra, S. Basavarajappa, I. Sogalad, Colloid Interfac. Sci. 27, 18-25 (2018), DOI: 10.1016/j.colcom.2018.09.003.
  • [23] A. Yazdani, T. Isfahani, Adv. Powder Tech. 29 (5), 1306-1316 (2018), DOI: 10.1016/j.apt.2018.02.025.
  • [24] J. Zygmuntowicz, M. Wachowski, A. Miazga, K. Konopka, W. Kaszuwara, Compos. Part B-Eng. 156, 113-120 (2019), DOI: 10.1016/j.compositesb.2018.08.079.
  • [25] W. Węglewski, M. Basista, M. Chmielewski, K. Pietrzak, Compos. Part B-Eng. 43 (2), 255-264 (2012), DOI: 10.1016/j.compositesb.2011.07.016.
  • [26] L. Zhou, S. Cui, Y. Zhai, F. Luo, Y. Dong, Ceram. Inter. 41 (10), 14908-14914 (2015), DOI: 10.1016/j.ceramint.2015.08.024.
  • [27] I. J. Shon, Ceram. Inter. 44 (2), 2587-2592 (2018), DOI: 10.1016/j.ceramint.2017.10.120
  • [28] Y. Zhou, Y. Gao, S. Wei, K. Pan, Y. Hu, Int. J. Refract. Met. H. 54, 186-195 (2016), DOI: 10.1016/j.ijrmhm.2015.07.033.
  • [29] J. Zygmuntowicz, A. Łukasiak, P. Piotrkiewicz, W. Kaszuwara, Composites Theory and practice 19 (2), 43-49 (2019).
  • [30] Methods of test for dense shaped refractory products. Determination of bulk density, apparent porosity and true porosity. Technical report, Standard by DIN-adopted European Standard DIN EN 993-1 (1995).
  • [31] K. Niihara, J. Mater. Sci. Letters 5 (2), 221-223 (1983). DOI: 10.1007/BF00725625.
  • [32] K. Niihara, R. Morena, D. P. H. Hasselmann, J. Mater. Sci. Letters 1 (1), 13-16, (1982). DOI: 10.1007/BF00724706.
  • [33] J. Dolbow, M. Gosz, Mech. Mater. 23, 311-321 (1996).
  • [34] S. Basrour, L. Robert, P. Delobelle, Mater. Sci. Eng. A 288 (2), 160-163 (2000).
  • [35] A. Ruys, Alumina Ceramics Biomedical and Clinical Applications, Woodhead Publishing (2019).
  • [36] M. Biswas, A. Saha, M. Dule, T. K. Mandal, J. Phys. Chem. C118, 22156-22165 (2014), https://doi.org/10.1021/jp5071874.
  • [37] Z. Piyong, Z. Gongchang, S. Ting, H. Shaobin, W. Tingting, Z. Heping, J. Catal. 369, 267-275 (2019), https://doi.org/10.1016/j.jcat.2018.11.003.
  • [38] D. Chakravarty, S. Bysakh, K. Muraleedharan, T. Narasinga Rao, R. Sundaresan, J. Am. Ceram. Soc. 91 (1), 203-8, (2008). DOI: 10.1111/j.1551-2916.2007.02094.x
Uwagi
EN
1. The study was accomplished thanks to the funds allotted by The National Science Centre within the framework of the research project ‘OPUS 13’ no. 2017/25/B/ST8/02036. This investigation supported by the Foundation for Polish Science (FNP) – START 2019 scholarship.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af0d65b7-4cfc-45a9-97a0-c54a2fb15001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.