PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological aspects of friction stir processing of AlZn5.5MgCu aluminum alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
FSP technology was used to modify the surface layer of the AlZn5.5.MgCu aluminum alloy by enriching its SiC particles. For this goal the FSP multi-chamber method was used. The SiC powder was placed in separated chambers hollowed in the modified material perpendicular to the surface of the sample. In order to achieve a more even distribution of the reinforcing phase in the aluminum alloy matrix and to minimize the risk of uncontrolled displacement of the SiC powder at the time of inserting the pin into the material, a two-step treatment was applied. In the first one, the working area of the pin was shifted relative to the axis of the chambers by ΔL. In the second step of the treatment the tool moved centrally along the line of chambers. As a result of friction treatment, intensive sputtering of SiC particles in the surface of the aluminum alloy and strong refinement of the alloy were observed. The consequence of the microstructural changes in the surface layer of the material and the formation of a metal-ceramic composite microstructure was a significant increase in the hardness of the aluminum alloy.
Rocznik
Strony
713--719
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology, Institute of Materials Engineering, 19 Armii Krajowej St., 42-200 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Department of Welding, 21 Armii Krajowej St., 42-200 Częstochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Materials Engineering, 19 Armii Krajowej St., 42-200 Częstochowa, Poland
Bibliografia
  • [1] J. Iwaszko and K. Kudła, “Surface modification of ZrO2‒10 wt. % CaO plasma sprayed coating”, Bull. Pol. Ac.: Tech. 64 (4), 937‒942 (2016).
  • [2] I.D. Uţu, G. Marginean, I Hulka, and V.A. Şerban, “Sliding wear behavior of remelted Al2O3‒TiO2 plasma sprayed coatings on titanium”, Sol. State Phenom. 254, 231‒236 (2016).
  • [3] M. Szkodo, A. Bień, and M. Antoszkiewicz, “Effect of plasma sprayed and laser re-melted Al2O3 coatings on hardness and wear properties of stainless steel”, Ceram. Int. 42 (9), 11275–11284 (2016).
  • [4] J. Kusinski, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus-Górnikowska, B. Major, L. Major, J. Marczak, and A. Lisiecki, “Laser modification of the materials surface layer – a review paper”, Bull. Pol. Ac.: Tech. 60 (4), 711‒728 (2012).
  • [5] A. Karimi, R. Soltani, M. Ghambari, and H. Fallahdoost, “High temperature oxidation resistance of plasma sprayed and surface treated YSZ coating on Hastelloy X”, Surf. Coat. Technol. 321, 378‒385 (2017).
  • [6] M. Gwoździk, “Characteristic of crystallite sizes and lattice deformations changes in the oxide layer formed on steel operated for a long time at an elevated temperature”, Sol. State Phenom. 203‒204, 204‒207 (2013).
  • [7] R. Bęczkowski and M. Gucwa, “Defects appearing in the surfacing layers of abrasion resistant”, Arch. Foundry Eng. 16 (4) 23‒28 (2016).
  • [8] Z.Y. Ma, A.L. Pilchak, M.C. Juhas, and J.C. Williams, “Microstructural refinement and property enhancement of cast light alloys via friction stir processing”, Scripta Mater. 58, 361‒366 (2008).
  • [9] J. Adamowski, C. Gambaro, E. Lertora, M. Ponte, and M. Szkodo, “Analysis of FSW welds made of aluminum alloy AW6082-T6”, Arch. Mater. Sci. Eng. 28/8, 453‒460 (2007)
  • [10] M.L. Sanella, T. Engstrom, D. Storjohann, and T.Y. Pan, “Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356”, Scripta Mater. 53, 201‒206 (2005).
  • [11] Y.C. Chen and K. Nakata, “Evaluation of microstructure and mechanical properties in friction stir processed SKD61 tool steel”, Mater. Charact. 60, 1471‒1475 (2009).
  • [12] R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, “Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel”, Sci. Technol. Weld. Join. 11 (5), 526‒537 (2006).
  • [13] P. Lacki, Z. Kucharczyk, R.E. Śliwa, and T. Gałaczyński, “Wpływ wybranych parametrów procesu zgrzewania tarciowego z przemieszaniem na pole temperatury”, Rudy Metale R57/8, 524‒532 (2012).
  • [14] M. Barmouz, M. Kazem Besharati Givi, and J. Seyfi, “On the role of processing parameters in production Cu/SiC metal matrix composities via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior”, Mater. Charact. 62, 108‒117 (2011).
  • [15] Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31”, Mater. Sci. Eng. A 433, 50‒54 (2006).
  • [16] M. Sharifitabar, A. Sarani, S. Khorshahian, and M. Shafiee Afarani, “Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route”, Mater. Des. 32, 4164‒4172 (2011).
  • [17] L. Suvarna Raju and A. Kumar, “Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing”, Defence Technol. 10, 375‒383 (2014).
  • [18] D. Deepak, R.S. Sidhu, and V.K. Gupta, “Preparation of 5083 Al-SiC surface composite by friction stir processing and its mechanical characterization”, Int. J. Mech. Eng. 3/1, 1‒11 (2013).
  • [19] M. Saravana Durai, D. Muthukrishnan, A.N. Balaji, and G.R. Raghav, “Experimental investigation and material characterization of A356 based composite (TiO2) by friction stir processing”, Int. J. Innov. Research in Sci., Eng. and Technol. 3/3, 1396‒1399 (2014).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af0d340c-1271-46db-b4b4-e95d6368b97d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.