PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Molecular dynamics study on axial elastic modulus of carbon nanoropes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon nanoropes (CNRs) are of interest for a wide variety of nanotechnological applica-tions. Since little attention has been paid to mechanical properties of CNRs, their axial elasticmodulus is explored herein. Molecular dynamics (MDs) simulations are adopted for analysisof Young's modulus of CNRs. It is also shown that increase in the initial helical angledecreases Young's modulus; however, by increase in the number of CNTs and strands,different influence on Young's modulus emerges. Therefore, the highest value of Young'smodulus obtained at the lower value of initial helical angle and consequently, Young'smodulus of bundle of straight CNTs is higher than CNRs with hierarchical helical structure. Itis further observed that Young's modulus experiences a non-monotonic variation withrespect to the number of CNTs (n) and strands (N) such that the increasing procedure ofYoung's modulus with respect to the number of CNTs and strands switches to decrease onesat n = 4 and N = 3. Therefore, the results obtained in the present study assist to control theelastic property of CNR by suitable design of number of CNTs, strands and initial helicalangle of CNT and strand and can lead to inspire optimal design of advanced nanostructures.
Rocznik
Strony
1127--1134
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Department of Aerospace Engineering, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
  • Department of Aerospace Engineering, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
autor
  • Department of Aerospace Engineering, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
Bibliografia
  • [1] L. Pan, T. Hayashida, A. Harada, Y. Nakayama, Effects of ironand indium tin oxide on the growth of carbon tubulenanocoils, Phys. B: Condens. Matter 323 (2002) 350–351.
  • [2] A. Csató, A. Szabó, A. Fonseca, D. Vuono, Z. Kónya, A.Volodin, C. Van Haesendonck, L. Péter Biro, G. Giordano, J.B.Nagy, Synthesis and characterisation of coiled carbonnanotubes, Catal. Today 181 (1) (2012) 33–39.
  • [3] J. Liu, X.Z. Zhang, Y. Zhang, X. Chen, J. Zhu, Nano-sizeddouble helices and braids: interesting carbon nanostructures,Mater. Res. Bull. 38 (2) (2003) 261–267.
  • [4] T. Luo, J. Liu, L. Chen, S. Zeng, Y. Qian, Synthesis of helicallycoiled carbon nanotubes by reducing ethyl ether withmetallic zinc, Carbon 43 (4) (2005) 755–759.
  • [5] X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, T. Zhang,Q. Li, S. Fan, Spinning and processing continuous yarns from4-inch Wafer scale super-aligned carbon nanotube arrays,Adv. Mater. 18 (12) (2006) 1505–1510.
  • [6] Q. Zhang, M.Q. Zhao, D.M. Tang, F. Li, J.Q. Huang, B. Liu, W.C.Zhu, Y.H. Zhang, F. Wei, Carbon-nanotube-array doublehelices, Angew. Chem. Int. Ed. 49 (21) (2010) 3642–3645.
  • [7] X. Qi, W. Zhong, Y. Deng, C. Au, Y. Du, Synthesis of helicalcarbon nanotubes, worm-like carbon nanotubes andnanocoils at 450 8C and their magnetic properties, Carbon48 (2) (2010) 365–376.
  • [8] J.P. Lu, Elastic properties of carbon nanotubes and nanoropes,Phys. Rev. Lett. 79 (7) (1997) 1297.
  • [9] H. Yan, L. Liu, Z. Zhang, Continually fabricating staple yarnswith aligned electrospun polyacrylonitrile nanofibers, Mater.Lett. 65 (15–16) (2011) 2419–2421.
  • [10] Z.L. Zhao, H.P. Zhao, J.S. Wang, Z. Zhang, X.Q. Feng,Mechanical properties of carbon nanotube ropes withhierarchical helical structures, J. Mech. Phys. Solids 71(2014) 64–83.
  • [11] D. Teich, Z.G. Fthenakis, G. Seifert, D. Tománek,Nanomechanical energy storage in twisted nanotube ropes,Phys. Rev. Lett. 109 (25) (2012) 255501.
  • [12] Z.G. Fthenakis, Z. Zhu, D. Teich, G. Seifert, D. Tomanek,Limits of mechanical energy storage and structural changesin twisted carbon nanotube ropes, Phys. Rev. B 88 (24) (2013)245402.
  • [13] S. Backer, The mechanics of bent yarns, Text. Res. J. 22 (10)(1952) 668–681.
  • [14] M.M. Platt, W.G. Klein, W.J. Hamburger, Mechanics of elasticperformance of textile materials. Part XIII: Torquedevelopment in yarn systems: singles yarn, Text. Res. J. 28(1958) 1–14.
  • [15] M.M. Platt, W.G. Klein, W.J. Hamburger, Mechanics of elasticperformance of textile materials. Part XIV: Some aspects ofbending rigidity of singles yarns1, Text. Res. J. 29 (1959)611–627.
  • [16] X. Tao, The bending properties of multi-ply worsted yarns,Int. J. Cloth. Sci. Technol. 6 (1994) 65–72.
  • [17] L. Xiang, H.Y. Wang, Y. Chen, Y.J. Guan, Y.L. Wang, L.H. Dai,Modeling of multi-strand wire ropes subjected to axialtension and torsion loads, Int. J. Solids Struct. 58 (2015)233–246.
  • [18] A. Frikha, P. Cartraud, F. Treyssede, Mechanical modeling ofhelical structures accounting for translational invariance.Part 1: Static behavior, Int. J. Solids Struct. 50 (9) (2013)1373–1382.
  • [19] A.H. Esbati, S. Irani, Probabilistic mechanical properties andreliability of carbon nanotubes, Arch. Civil Mech. Eng. 18 (2)(2018) 532–545.
  • [20] F. Mehralian, Y. Tadi Beni, Y. Kiani, Molecular dynamicsstudy on the thermal buckling of carbon nanotubes in thepresence of pre-load, Mater. Res. Express 4 (1) (2017)015011.
  • [21] F. Mehralian, Y. Tadi Beni, Y. Kiani, Thermal bucklingbehavior of defective CNTs under pre-load: a moleculardynamics study, J. Mol. Graphics Model. 73 (2017) 30–35.
  • [22] Y. Xiang, H.S. Shen, Shear buckling of rippled graphene bymolecular dynamics simulation, Mater. Today Commun. 3(2015) 149–155.
  • [23] R. Ansari, S. Ajori, S. Rouhi, Elastic properties and bucklingbehavior of single-walled carbon nanotubes functionalizedwith diethyltoluenediamines using molecular dynamicssimulations, Superlattices Microstruct. 77 (2015) 54–63.
  • [24] S. Plimpton, Fast parallel algorithms for short-rangemolecular dynamics, J. Comput. Phys. 117 (1) (1995) 1–19.
  • [25] J. Tersoff, Modeling solid-state chemistry: interatomicpotentials for multicomponent systems, Phys. Rev. B 39 (8)(1989) 5566.
  • [26] A. Kinaci, J.B. Haskins, C. Sevik, T. Çagin, Thermalconductivity of BN-C nanostructures, Phys. Rev. B 86 (11)(2012) 115410.
  • [27] B. WenXing, Z. ChangChun, C. WanZhao, Simulation ofYoung's modulus of single-walled carbon nanotubes bymolecular dynamics, Phys. B: Condens. Matter 352 (1–4)(2004) 156–163.
  • [28] J.L. Tsai, J.F. Tu, Characterizing mechanical properties ofgraphite using molecular dynamics simulation, Mater. Des.31 (1) (2010) 194–199.
  • [29] K. Feyrer, Wire Ropes, Springer-Verlag Berlin Heidelberg,Berlin, 2007.
  • [30] G.A. Costello, Theory of Wire Rope, Springer Science andBusiness Media, 1997.
  • [31] A. Montazeri, M. Sadeghi, R. Naghdabadi, H. Rafii-Tabar,Computational modeling of the transverse-isotropic elasticproperties of single-walled carbon nanotubes, Comput.Mater. Sci. 49 (3) (2010) 544–551.
  • [32] N. Yao, V. Lordi, Young's modulus of single-walled carbonnanotubes, J. Appl. Phys. 84 (4) (1998) 1939–1943.
  • [33] J.L. Zang, Q. Yuan, F.C. Wang, Y.P. Zhao, A comparative studyof Young's modulus of single-walled carbon nanotube byCPMD, MD and first principle simulations, Comput. Mater.Sci. 46 (3) (2009) 621–625.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-af03c394-2371-476a-a0dc-6fd2c7cf1870
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.