PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of particle loading in deep-bed filter. Trasport, deposition and reentrainment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Deep bed filtration is an effective method of submicron and micron particle removal from the fluid stream. There is an extensive body of literature regarding particle deposition in filters, often using the classical continuum approach. However, the approach is not convenient for studying the influence of particle deposition on filter performance (filtration efficiency, pressure drop) when non-steady state boundary conditions have to be introduced. For the purposes of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. For aggregates the effect of their structure on displacement is taken into account. The possibility of particles rebound from the surface of collector or reentrainment of deposits to fluid stream is calculated by energy balanced oscillatory model derived from adhesion theory. The results show the evolution of filtration efficiency and pressure drop of filters with different internal structure described by the size of pores. The size of resuspended aggregates and volume distribution of deposits in filter were also analyzed. The model enables prediction of dynamic filter behavior. It can be a very useful tool for designing filter structures which optimize maximum lifetime with the acceptable values of filtration efficiency and pressure drop.
Rocznik
Strony
405--417
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Abuzeid S., Busnaina A., Ahmadi G., 1991. Wall deposition of aerosol particles in a turbulent channel flow. J. Aerosol Sci., 22, 43–62. DOI: 10.1016/0021-8502(91)90092-V.
  • 2. Beer F.P., Johnson Jr. E.R., 1997. Vector mechanics for engineers dynamics. 6th edition, McGrow-Hill, Boston.
  • 3. Biggs M.J., Humby S.J., Buts A., Tuzun U., 2003. Explicit numerical simulation of suspension flow with deposition in porous media; influence of local flow field on deposition processes predicted by trajectory methods. Chem. Eng. Sci., 58, 1271-1288. DOI: 10.1016/S0009-2509(02)00103-3.
  • 4. Chandrasekhar S., 1943. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys., 15, 1-89. DOI: 10.1103/RevModPhys.15.1.
  • 5. Chen S., Cheung C.S., Chan C.K., Zhu C., 2002. Numerical simulation of aerosol collection in filters with staggered parallel rectangular fibres. Comp. Mech., 28, 152–161. DOI: 10.1007/s00466-001-0289-4.
  • 6. Dunnett S.J., Clement C.F., 2006. A numerical study of the effects of loading from diffusive deposition on the efficiency of fibrous filters. J. Aerosol Sci., 37, 1116-1139. DOI: 10.1016/j.jaerosci.2005.08.001.
  • 7. Dunnett S.J., Clement C.F., 2012. Numerical investigation into the loading behavior of filters operating in the diffusional and interception deposition regimes. J. Aerosol Sci., 53, 85-99. DOI: 1016/j.jaerosci.2012.06.008.
  • 8. Gupta D., Peters M., 1985. A Brownian dynamics simulation of aerosol deposition onto spherical collectors. J. Colloid Interface Sci., 104, 375–389. DOI: 10.1016/0021-9797(85)90046-3.
  • 9. Iwan D.W., Mason, Jr. B.A., 1980. Equivalent linearization for systems subjected to non-stationary random excitation. Int. J. Non-Lin. Mech. 15, 71–82. DOI: 10.1016/0020-7462(80)90001-3.
  • 10. Jackiewicz A., Jakubiak S., Gradoń L., 2015. Analysis of the behavior of deposits in fibrous filters during non-steady state filtration using X-ray computed tomography. Sep. Pur. Techn., 156, 12-21. DOI: 10.1016/j.seppur.2015.10.004.
  • 11. Karadimos A., Ocone R., 2003. The effect of the flow field recalculation on fibrous filter loading: a numerical simulation. Powder Techn., 137, 109-119. DOI: 10.1016/S0032-5910(03)00132-3.
  • 12. Long W., Hilpert M., 2009. A correlation for the collection efficiency of Brownian particles in clean bed filtration in sphere packings by a lattice-Boltzmann method. Environ. Sci. Technol., 35, 205-218. DOI: 10.1021/es8024275.
  • 13. Masselot A., 2000. A new numerical approach to snow transport and deposition by wind: A parallel lattice gas model. PhD Thesis, Geneve University, 2000.
  • 14. Moskal A., Payatakes A.C., 2006. Estimation of the diffusion coefficient of aerosol particle aggregates using Brownian simulation in the continuum regime. J. Aerosol Sci., 37, 1081-1101. DOI: 10.1016/j.jaerosci.2005.10.005.
  • 15. Payatakes A.C., Tien C., Turain R.M., 1973. A new model for granular porous media: Part I. Model formulation. AIChE J., 19, 58-67. DOI: 10.1002/aic.690190110.
  • 16. Podgórski A., 2002. On the transport, deposition and filtration of aerosol particles in fibrous filters: Selected problems. Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw.
  • 17. Przekop R., Gradoń L., 2008. Deposition and filtration of nanoparticles in the composites of nano- and microsized fibers. Aerosol Sci. Techn., 42, 483-493. DOI: 10.1080/02786820802187077.
  • 18. Przekop R., Grzybowski K., Gradoń L., 2004. Energy-balanced oscillatory model for description of particles deposition and reentrainment on fiber collector. Aerosol Sci. Techn., 38, 330-337. DOI: 10.1080/02786820490427669.
  • 19. Przekop R., Podgórski A., 2004. Effect of shadowing on deposition efficiency and dendrites morphology in fibrous filters. Chem. Process Eng., 25, 1563-1568.
  • 20. Qian Y.H., d’Humieres D., Lallemand P., 1992. Lattice-BGK models for Navier-Stokes equation. Europhys. Lett., 17, 479–484.
  • 21. Reeks M.W., Reed J., Hall D., 1988. On the resuspension of small particles by turbulent flow. J. Phys. D., 21, 574-589.
  • 22. Skouras E.D., Burganos V.N., Paraskeva C.A., Payatakes A.C., 2004. Simulation of downflow and upflow depth filtration of non-Brownian particles under constant flowrate or constant pressure drop. J. Chinese Inst. Chem. Eng., 35, 87-100.
  • 23. Sztuk E., Przekop R., Gradoń L., 2012. Brownian dynamics for calculation of the single fiber deposition efficiency of submicron particles. Chem. Process Eng., 33, 279-290. DOI: 10.2478/v10176-012-0025-y.
  • 24. Uhlenbeck E.G., Ornstein S.L., 1930. On the theory of the Brownian motion. Phys. Rev. 36, 823–841. DOI: 10.1103/PhysRev.36.823.
  • 25. Wang Q., Maze B., Vahedi Tafreshi H., Pourdeyhimi B., 2006. A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media. Chem. Eng. Sci., 61, 4871-4883. DOI: 10.1016/j.ces.2006.03.039.
  • 26. Ziskind G., Fichman M., Gutfinger C., 2000. Particle behavior on surfaces subjected to external excitations. J. Aerosol Sci., 26, 703-720. DOI: 10.1016/S0021-8502(99)00554-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aefe7374-6a0c-4603-8c4b-6c7af4786aa7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.