Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.
Czasopismo
Rocznik
Tom
Strony
67--71
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Sai Gon University, Department of Environmental Sciences, Ho Chi Minh City, Vietnam
Bibliografia
- 1. Selvamurugan, M., Doraisamy, P. & Maheswari, M. (2010). An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process. Ecol. Eng. 36, 1686–1690. DOI: 10.1016/j.ecoleng.2010.07.013.
- 2. Zayas, T.P., Geissler, G. & Hernandez, F. (2007). Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci. 19, 300–305. DOI: 10.1016/S1001-0742(07)60049-7.
- 3. Al-Mutairi, N.Z. (2006). Coagulant toxicity and effectiveness in a slaughterhouse wastewater treatment plant. Ecotoxicol. Environ. Saf. 65, 74–83. DOI: 10.1016/j.ecoenv.2005.05.013.
- 4. Satori, H. & Kawase, Y. (2014). Decolorization of dark brown colored coffee effluent using zinc oxide particles: The role of dissolved oxygen in degradation of colored compounds. J. Environ. Manage. 139, 172–179. DOI: 10.1016/j.jenvman.2014.02.032.
- 5. Hang, Y.D. & Woodams, E.E. (1979). A Process for the Removal of Coffee Color from Wastewater. J. Food Sci. 44, 246–247. DOI: 10.1111/j.1365-2621.1979.tb10052.x.
- 6. Devi, R. (2010). Innovative Technology of COD and BOD Reduction from Coffee Processing Wastewater Using Avocado Seed Carbon (ASC). Water, Air, Soil Pollut. 207, 299–306. DOI: 10.1007/s11270-009-0137-2.
- 7. Qiao, W., Takayanagi, K., Shofie, M., Niu, Q., Yu, H.Q. & Li, Y.Y. (2013). Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance. Bioresour. Technol. 150, 249–258. DOI: 10.1016/j.biortech.2013.10.002.
- 8. Benincá, C., Vargas, F.T., Martins, M.L., Gonçalves, F.F., Vargas, R.P., Freire, F.B. & Zanoelo, E.F. (2016). Removal of clomazone herbicide from a synthetic effluent by electrocoagulation. Water Sci. Technol. 73, 2944–2952. DOI: 10.2166/wst.2016.133.
- 9. Abdel, S.G.A., Baraka, A.M., Omran, K.A. & Mokhtar, M.M. (2012). Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. 7, 6654–6665.
- 10. Aitbara, A., Cherifi, M., Hazourli, S. & Leclerc, J.P. (2016). Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes. Desalin. Water. Treat. 57, 3395–3404. DOI: 10.1080/19443994.2014.989411.
- 11. Mollah, M.Y.A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Parga, J. & Cocke, D.L. (2004). Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 114, 199–210. DOI: 10.1016/j.jhazmat.2004.08.009.
- 12. Moradi, M., Eslami, A. & Ghanbari, F. (2016). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: response surface modeling and optimization. Desalin. Water. Treat. 57, 4659–4670. DOI: 10.1080/19443994.2014.995714.
- 13. Bui, H.M. (2016). Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network. J. Serb. Chem. Soc. 81, 959–974. DOI: 10.2298/JSC160108032M.
- 14. Heffron, J., Marhefke, M. & Mayer, B.K. (2016). Removal of trace metal contaminants from potable water by electrocoagulation. Sci. Rep. 6, 1–9. DOI: 10.1038/srep28478.
- 15. Montgomery, D.C., Design and Analysis of Experiments, Eighth ed., John Wiley & Sons, Inc., United States, 2013.
- 16. Daneshvar, N., Khataee, A.R., Amani Ghadim, A.R. & Rasoulifard, M.H. (2007). Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). J. Hazard. Mater. 148, 566–572. DOI: 10.1016/j.jhazmat.2007.03.028.
- 17. Körbahti, B.K., Aktaş, N. & Tanyolaç, A. (2007). Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J. Hazard. Mater. 148, 83–90. DOI: 10.1016/j.jhazmat.2007.02.005.
- 18. Gengec, E., Kobya, M., Demirbas, E., Akyol, A. & Oktor, K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination 286, 200-209. DOI: 10.1016/j.desal.2011.11.023.
- 19. Khayet, M., Zahrim, A.Y. & Hilal, N. (2011). Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem. Eng. J. 167, 77–83. DOI: 10.1016/j.cej.2010.11.108.
- 20. Federation, W.E. & American Public Health, A., Standard methods for the examination of water and wastewater, American Public Health Association (APHA), 2005.
- 21. Barrera-Díaz, C., Palomar-Pardavé, M., Romero-Romo, M. & Martínez, S. (2003). Chemical and electrochemical considerations on the removal process of hexavalent chromium from aqueous media. J. Appl. Electrochem. 33, 61–71. DOI: 10.1023/A:1022983919644
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aef48b34-2db8-420b-abe0-abb3dff5e203
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.