PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact Behavior of the Ballistic Targets Package Composed of Dyneema Polymer and High Entropy Alloy Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ballistic targets are multi-material assemblies that can be made of various materials, such as metal alloys, ceramics, and polymers. Their role is to provide collective or individual ballistic protection against high-speed dynamic penetrators or kinetic fragments. The paper presents the impact behavior with incendiary perforating bullets having 7.62 mm of ballistic packages made of combinations between Dyneema ultra-high-molecular-weight polyethylene and high entropy alloy from alloying system AlCoCrFeNi, by analyzing the dynamic phenomena (deformation, perforation) that take place at high speeds. The geometry evolution of the physical model subjected to numerical simulation allows a very good control over the discretization network and also allows the export for modeling to nonlinear transient phenomena. The results obtained by numerical simulation showed that the analyzed ballistic package does not allow sufficient protection for values of impact velocities over 500 m/sec.
Twórcy
  • University Politehnica of Bucharest, Faculty of Industrial Engineering and Robotics, 060042 Splaiul Independentei 313, Bucharest, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, 060042 Splaiul Independentei 313, Bucharest, Romania
  • UPS PILOR ARM, Laminorului Street, 2, Targoviste, Romania
  • UPS PILOR ARM, Laminorului Street, 2, Targoviste, Romania
  • University Politehnica of Bucharest, Faculty of Materials Science and Engineering, 060042 Splaiul Independentei 313, Bucharest, Romania
  • Military Technical Academy Ferdinand I, 050141, George Cosbuc, 39-49, Bucharest, Romania
  • National Research-Development Institute for Non-Ferrous and Rare Metals - IMNR, 077145, Biruintei, 102, Pantelimon, Romania
Bibliografia
  • [1] G. Cooper, Ph. Goots, Ballistic Protection: chapter IV, 2003 British Crown copyright 2003/DSTL.
  • [2] https://www.grandviewresearch.com/industriy-analysis/military-personal-protective-equipment-market
  • [3] K. Maweja, W. Stumpf, The design of advanced performance high strength low-carbon martensitic armour steels. Microstructural considerations, Materials Science and Engineering A 480, 160-166 (2008).
  • [4] P.K. Jena, K.S. Kumar, V.R. Krishna, A.K. Singh, T.B. Bhat, Studies on the role of microstructure on performance of a high strength armour steel, Engineering Failure Analysis 15, 1088-1096 (2008).
  • [5] V. Geanta, T. Chereches, P. Lixandru, I. Voiculescu, R. Stefanoiu, D. Dragnea, T. Zecheru, L. Matache, Virtual Testing of Composite Structures Made of High Entropy Alloys and Steel, Metals 7 (11), 496 (2017).
  • [6] V. Geanta, I. Voiculescu, R. Stefanoiu, T. Chereches, T. Zecheru, L. Matache, A. Rotariu, Dynamic Impact Behaviour of High Entropy Alloys Used in the Military Domain, Conference Series-Materials Science and Engineering (374), UNSP 012041 (2018).
  • [7] L.C. Matache, P. Lixandru, T. Chereches, A. Mazuru, D. Chereches, V. Geanta, I. Voiculescu, E. Trana, A.N. Rotariu, Determination of material constants for high strain rate constitutive model of high entropy alloys, MODTECH 2019. IOP Conference Series-Materials Science and Engineering (591), 012057 (2019).
  • [8] E. Palta, M. Gutowski, H. Fang, A numerical study of steel and hybrid armor plates under ballistic impacts, International Journal of Solids and Structures (136-137), 279-294 (2018).
  • [9] B.M. Balasubramanian, V., M.G. Reddy, Effect of hardfaced interlayer thickness on ballistic performance of armour steel welds, Materials and Design (44), 59-68 (2013).
  • [10] S. Babu, V. Balasubramanian, M.G. Reddy, T.S. Balasubramanian, Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing, Materials and Design (31), 2664-2669 (2010).
  • [11] M. Balakrishnan, V. Balasubramanian, M.G. Reddy, K. Sivakumar, Effect of buttering and hardfacing on ballistic performance of shielded metal arc welded armour steel joints. Materials and Design (32), 469-479 (2011).
  • [12] N. Kılıc, B. Ekici, Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition, Materials and Design (44), 35-48 (2013).
  • [13] A. Ali, R. Adawiyah, K. Rassiah, W. Kuan Ng, F. Arifin, F. Othman, M.S. Hazin, M.K. Faidzi, M.F. Abdullah, M.M.H. Megat Ahmad, Ballistic impact properties of woven bamboo-woven e-glass-unsaturated polyester hybrid composites, Defence Technology (15), 282-294 (2019).
  • [14] T. Singh, C.I. Pruncu, B. Gangil, V. Singh, G. Fekete, Comparative performance assessment of pineapple and Kevlar fibers based friction composites, J. Mater. Res. Technol. 9 (2), 1491-1499 (2020).
  • [15] W. Liu, Z. Chen, Z. Chen, X. Cheng, Y. Wang, X. Chen, J. Liu, B. Li, S. Wang, Influence of different back laminate layers on ballistic performance of ceramic composite armor, Materials and Design (87), 421-427 (2015).
  • [16] Q.H. Shah, Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts, International Journal of Impact Engineering (36), 1128-1135 (2009).
  • [17] I.G. Crouch, Body Armour - New Materials, New Systems, Defence Technology (15), 241-253 (2019).
  • [18] Z. Shen, D. Hu, G. Yang, X. Han, Ballistic Reliability Study on SiC/UHMWPE, composite armor against armor-piercing bullet, composite structures (213), 209-219 (2019).
  • [19] R. Pastore, G. Giannini, R.B. Morles, M. Marchetti, D. Micheli, Impact response of nanofluid-reinforced antiballistic Kevlar Fabrics, Intechopen (2012). DOI: http://dx.doi.org/10.5772/50411
  • [20] G. Nilakantan, S. Horner, V. Halls, J. Zheng, Virtual ballistic impact testing of Kevlar soft armor: Predictive and validated finite element modeling of the V0-V100 probabilistic penetration response, Defence Technology (14), 213-225 (2018).
  • [21] Y. Yang, X. Chen, Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design, Comp. Struct. (164), 1-9 (2017).
  • [22] F.O. Braga, F.S. da Luz, S.N. Monteiro, E.P. Lima Jr., Effect of the impact geometry in the ballistic trauma absorption of a ceramic multilayered armor system, J. Mater. Res. Technol. 7 (4), 554-560 (2018).
  • [23] A. Badakhsh, W. Han, S.C. Jung, K.H. An, B.J. Kim, Preparation of Boron Nitride-Coated Carbon Fibers and Synergistic Improvement of Thermal Conductivity in Their Polypropylene-Matrix Composites, Polymers 11, (12) 2009.
  • [24] M.S. Oliveira, F.C.G. Filho, A.C. Pereira, L.F. Nunes, F. Santos da Luz, F.O. Braga, H.A. Colorado, S.N. Monteiro, Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis, J. Mater. Res. Technol. 8 (6), 5899-5908 (2019).
  • [25] F. Santos da Luz, F. da Costa Garcia Filho, M. Souza Oliveira, L.F. Cassiano Nascimento, S. Neves Monteiro. (2020). Composites with Natural Fibers and Conventional Materials Applied in a Hard Armor: A Comparison, Polymers (12) (1920). DOI: https://doi.org/10.3390/polym12091920
  • [26] T. Chereches, P. Lixandru, V. Geanta, I. Voiculescu, D. Dragnea, R. Stefanoiu, Layered Structures Analysis, with High Entropy Alloys, for Ballistic Protection, Applied Mechanics and Materials (809-810), 724-729 (2015).
  • [27] V. Geanta, I. Voiculescu, T. Chereches, T. Zecheru, L. Matache, A. Rotariu, Behavior to Dynamic Loads of Composite Multi-layer Structures. Mat. Plast. Bucharest 6 (2), 460-465 (2019).
  • [28] V. Geanta, I. Voiculescu, Characterization and Testing of High Entropy Alloys from AlCrFeCoNi System for Military Applications, Engineering Steels and High Entropy-Alloys, p. 139-156 (2019). Intechopen. DOI: http://dx.doi.org/10.5772/intechopen.88622
  • [29] G. Constantin, E. Balan, I. Voiculescu, V. Geanta, V. Craciun, Cutting behavior of Al0.6CoCrFeNi high entropy alloy, Materials 13 (18), 4181 (2020). DOI: https://doi.org/10.3390/ma1318418
  • [30] I. Voiculescu, V. Geanta, M. Ionescu, Effects of heat treatments on the microstructure and microhardness of AlxCrFeNiMn alloys. annals of "Dunarea de Jos" University of Galati. Fasc. XII, Welding Equipment and Technology (26), 5-11 (2015).
  • [31] L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, L. Zhou, Effect of aging temperature on microstructure and properties of CoCrCuFeNi high-entropy alloy, Intermetallics (17), 266-269 (2009).
  • [32] C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, S.K. Chen, Deformation and aging behaviors of high-entropy alloy Al0.5CoCrCuFeNi, J. All. Comp. (486), 424-435 (2009).
  • [33] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. All. Comp. 1-9 (2009). DOI: https://doi.org/10.1016/J.jallcom.2009.08.090
  • [34] V. Geantă, I. Voiculescu, I. Miloșan, B. Istrate, I.M. Mateş, Chemical Composition Influence on Microhardness, Microstructure and Phases Morphology of AlxCrFeCoNi High Entropy Alloys, Rev. Chim. Bucharest 69 (4). 798-801 (2018).
Uwagi
1. The research work was financially supported by the Romanian Ministry of Research and Innovation, CCCDI - UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0239/20 PCCDI 2018, “Individual and collective protection systems for the military domain based on high entropy alloy - HEAPROTECT” and project number PN-III-P2-2.1-PED-2019-3953, contract 514PED ⁄ 2020 “New ceramic layer composite material processed by laser techniques for corrosion and high temperature applications - LAS-CERHEA“, within PNCDI III.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aef2e919-c8f8-4ca3-94fe-2dee5f0d9834
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.