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Abstract: A simulation model to evaluate risks in Power Systems including green energy 

sources to generate electricity for electro mobility use is presented in the paper. The model 

allows to calculate risk indicator that characterize the performance of the Power Systems. 

The model considers the additional risks of wind and solar variability in the Power Systems, 

through wind farms and PV farms, respectively. Also, in the recent years, the number of 

electric vehicles (EVs) on the road have been rapidly increasing. Charging this increasing 

number of EVs is expected to have an impact on the power grid especially if high charging 

powers and opportunistic charging are used. Multiple papers have observed that the 

charging stations are used by multiple users during the day. In a context where electric 

mobility is gaining increasing importance as a more sustainable solution for urban 

environments, this work presents the optimization of charging profiles of the potential users 

of these charging stations. We analyzed the charging profiles in a power grid with 

renewables sources of energy and we determine the optimal charging profiles for the power 

grid based on maximizing the energy delivered by renewable sources of energy. 
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1. Introduction 

Cities play a key role in sustainable development. Urban growth must be managed in 

ways that support and drive economic development and achieve social cohesion and 

environmental sustainability. The concept of Smart Cities emerged in the same way as 

Smartphones or Smart TVs. Several initiatives are being developed as part of Smart City 

projects; however, there is a lack of consistent indicators, databases and methodologies for 

assessing, financing, and implementing these kinds of initiatives. Smart City projects today 

are classified according to six clusters known as axes: Mobility, Environment, Government, 

Economy, People and Living. The reference [4] show dynamically and graphically the 

scope of development of Spanish Smart City initiatives in terms of mobility and 

environmental issues, as two of the fundamental axes of Smart City development. The study 

was carried out in the 62 cities in the Spanish Smart Cities Network (RECI). The interactive 

map describes the status of Spanish cities by means of socioeconomic and demographic 

indicators and provides a thorough assessment of the maturity of Smart Cities based on their 

variables. 

In the axes Mobility, one example is the reference [7] because show that a visualization 

and simulation of Intelligent Transportation Systems (ITS) for future city models is a key 

research area to bring better traffic safety and efficiency solutions in smart cities. However, 

the cost of deploying large-scale testbeds to analyze the performance of these solutions is 

prohibitively huge. Therefore, cooperative ITS simulation platforms are essential to test the 

performance of such solutions before their actual deployment. In order to fulfill this 

requirement, reference [7] developed PySNS3 (a Python based framework for bidirectional 

coupling between NS3 and SUMO). To test the robustness and reliability of proposed 

framework they have compared its mobility as well as communication related simulation 

results with state-of-the-art NS2-mobility-model. They have performed a simulation 

scenario of Harbin city that includes evaluation of 802.11p MAC/PHY characteristics, the 

architecture of Wireless Access in Vehicular Environment (WAVE), and prediction of the 

vehicular Edge computation capacity. They have also performed the evaluation of a traffic 

efficiency application using proposed framework to reduce the fuel consumption and 

waiting time. The simulation results proved that the proposed framework can offer dynamic 

coupling between SUMO and NS3 for the evaluation of Edge computing solutions of ITS 

for future city models. 

The sustainable governance of transport systems remains a significant challenge for 

policy makers worldwide, particularly in cities. Urban areas are developing rapidly from a 

technological viewpoint, and innovative technologies create new possibilities for smart 

mobility management. For this reason, reference [8] investigates the relationship between 

the implementation of the smart city concept and the idea of sustainable transport, 

particularly regarding the reduction of transport generated CO2 emissions. The study 

estimates CO2 emissions for different potential scenarios of development for the Warsaw 

transport system until 2050 using the United Nations for FITS (For Future Inland Transport 

Systems) model. The study also analyses the additional impact on CO2 emissions of smart 
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city elements as determinants of mobility. The results show that meeting the reduction 

targets set by the European Union 2011 White Paper on Transport will be challenging, 

requiring an in-depth transformation of the transport and energy sectors. This study also 

confirms that smart city solutions can play a crucial role in mitigating transport emissions 

and meeting reduction goals. The conclusions provide important insights for the design of 

smart mobility governance and enhance the relationship between transport policy and 

research. 

One example of mitigation solution in the transport are electrical vehicles. With the 

recent advances in battery technology and the resulting decrease in the charging times, 

public charging stations are becoming a viable option for Electric Vehicle (EV) drivers. 

Concurrently, emergence and the wide-spread use of location-tracking devices in mobile 

phones and wearable devices has paved the way to track individual-level human movements 

to an unprecedented spatial and temporal grain. Motivated by these developments, reference 

[6] propose a novel methodology to perform data-driven optimization of EV charging 

station locations. They formulate the problem as a discrete optimization problem on a 

geographical grid, with the objective of covering the entire demand region while 

minimizing a measure of drivers’ total excess driving distance to reach charging stations, 

the related energy overhead, and the number of charging stations. Since optimally solving 

the problem is computationally infeasible, they present computationally efficient solutions 

based on the genetic algorithm. They then apply the proposed methodology to optimize EV 

charging stations layout in the city of Boston, starting from Call Detail Records (CDR) of 

one million users over the span of 4 months. The results show that the genetic algorithm 

provides solutions that significantly reduce drivers’ excess driving distance to charging 

stations, energy overhead, and the number of charging stations required compared to both 

a locally optimized feasible solution and the current charging station deployment in the 

Boston metro area. They further investigate the robustness of the proposed methodology 

and show that building upon well-known regularity of aggregate human mobility patterns, 

the layout computed for demands based on the single day movements preserves its 

advantage also in later days and months. When collectively considered, the results presented 

in this paper indicate the potential of data-driven approaches for optimally placing public 

charging facilities at urban scale. 

In the recent years, the number of electric vehicles (EVs) on the road have been 

rapidly increasing. Charging this increasing number of EVs is expected to have an impact 

on the electricity grid especially if high charging powers and opportunistic charging are 

used. Several models have been proposed to quantify this impact. Multiple papers have 

observed that the charging stations are used by multiple users during the day. However, 

this observation was not assumed in any previous model. Moreover, none of the previous 

models relied on geospatial maps to extract information about the parking lots (where 

charging stations are installed) and the charging profiles of the potential users of these 

charging stations. In the reference [5], a spatial Markov chain model is developed to 

model the charging load of EVs in cities. The model assumes three distinct charging 

profiles: Work, Home, and Other. Geospatial maps were used to estimate the charging 
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profile, or mixture of profiles, of the charging stations based on the nearby building types. 

Also, the proposed model can potentially be used along with renewable energy sources 

models to estimate the spatial-temporal synergy potentials between the two technologies. 

Evaluating the synergy potentials might be of value to grid operators, policy makers, 

market traders, etc. 

In the contest of European and National choices regarding energy and mobility 

policies, the reference [1] introduce reasonable guidelines for the local promotion of electric 

mobility in an area of central Italy and possibly to extend the methodology to other 

regions/countries. In fact, the path towards car electrification is started worldwide, but the 

rate of increase of electrically powered cars will depend primarily on charging stations 

availability. In this respect, utilities that manage/own local grids may be key actors by 

investing on infrastructures and thus locally creating the conditions for the spreading of 

electric cars. A techno-economic analysis of the investment of a local utility has been 

performed considering medium- and long term-forecasts of electricity and fuel prices, as 

well as electric cars market share and economic risk. The study proved that an investment 

in urban charging station infrastructure in Italy can be profitable even without incentives, 

with a payback period of 4-5 years. The results of the analysis have been exploited by an 

Italian utility which owns/manages the local electric grid in two municipalities. The first 

steps of the plan implementation, which started in 2014, are reported in the paper. 

In a context where electric mobility is gaining increasing importance as a more 

sustainable solution for urban environments, the reference [2] presents an analysis of 

electric mobility feasibility and adequacy based on private users' naturalistic driving data. 

Several scenarios were tested to evaluate different charging event opportunities and their 

impacts on electric mobility feasibility. In more detail, scenario 1 considered that vehicles 

would recharge whenever they are stopped for 2, 4 or 6 h, either on weekdays or weekend 

days; scenario 2 tested the hypothesis of recharging only during the night period; and 

scenario 3 assumed that vehicles would recharge during the day on weekdays. Furthermore, 

the potential energy impacts of electric mobility at a city level, by applying a driver and 

street level approach, were also estimated. 

Photovoltaic generation and electric mobility are disruptive technologies in the power 

and transport sectors, and both pose challenges for power grids. The scholarship has focused 

on potential synergies when these two technologies are combined, and recent research 

shows that interactions between photovoltaic generation and electric mobility could 

decrease the overall burden on power grids and empower one technology with the other's 

specificities. Electric vehicles (EV) could use photovoltaic energy (PV) and benefit from 

cheap carbon-free electricity for charging. In return, PV systems could use the bidirectional 

flexibility of EV batteries to maximize their self-consumption. As these synergies operate, 

economic spillovers from these technologies are expected to improve, thus further 

leveraging their joint deployment. The reference [3] develop a systematic framework to 

review the various underlying conditions for synergy as they have been studied in the 

literature. It emerges that this synergy is driven by technical as well as economic factors. 

First, it happens in the mid-scale spatial configuration (large workplace buildings and 



 Markov chain Monte Carlo simulation model for risk assessment the power systems…  

19 

charging stations) and less obviously at other scales (eg. households, territories) and in 

technologically diversified systems. Second, although under-studied in the literature, the 

economic context (level of cooperation between stakeholders, regulation and policy, etc.) 

of interactions between PV and EV is crucial for successful synergy. Finally, they identify 

several remaining issues with these conditions that warrant further research. 

1.1. Contribution of the paper 

Based on the previous references, we propose a new approach related with several 

topics defined above. From the reference [4], we adapt the Smart City concepts in the axes 

mobility, and we connected with the reference [7] because we contribute with the idea that 

a cooperative Intelligent Transportation Systems (ITS) simulation platforms are essential to 

test the performance of such solutions before their actual deployment. From the reference 

[8] we assume the relationship between the implementation of the smart city concept and 

the idea of sustainable transport, particularly regarding the reduction of transport generated 

CO2 emissions, in this case using V2G system, and also we contribute with the proposal of 

the reference [6] because we relate the novel methodology to perform data-driven 

optimization of EV charging station locations of the reference [6] with the reference [5] that 

assumes three distinct charging profiles: Work, Home, and Other. In the end, we propose 

analyze the impact of V2G system in the grid motivated for the reference [2] that show 

several scenarios to evaluate different charging event opportunities and their impacts on 

electric mobility feasibility, and for the reference [3], this last reference show how 

photovoltaic generation and electric mobility are disruptive technologies in the power and 

transport sectors, and both pose challenges for power grids. The paper summarizes all these 

ideas in a new approach. 

2. Material and methods 

2.1. Description 

The microgrid is divided into four important parts: A diesel generator, acting as the 

base power generator; a PV farm combined with a wind farm, to produce renewable energy; 

a V2G system installed next to the last part of the system which is the load of the grid. The 

size of the microgrid represents approximately a community of a thousand households 

during a low consumption day in spring or fall. There are 100 electric vehicles in the base 

model which means that there is a 1:10 ratio between the cars and the households. This is a 

possible scenario in a foreseeable future (see fig. 1). 
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Fig. 1. Microgrid diagram 

2.2. Diesel Generator 

The diesel generator balances the power consumed and the power produced, acting as 

the base power generation. The model proposed to simulate generating capacity of the diesel 

generator is defined below: 

    ifi i initial finalG t C t t t    (1) 

where Ci nominal capacity of the diesel generator i; tfinal - tinitial is the simulation 

window, usually 24 hours and i = 1, 2, …, NG (number of diesel generators). 

2.3. Renewable Energy 

There are two sources of renewable energy in this microgrid. First, a PV farm produces 

energy proportional to three factors: the size of the area covered by the PV farm, the 

efficiency of the solar panels and the irradiance data. Second, a wind farm model produces 

electrical power following a non-linear relationship with the wind. When the wind reaches 

a nominal value, the wind farm produces the nominal power. The wind farm trips from the 

grid when the wind speed exceeds the maximum wind value, until the wind gets back to its 

nominal value. 

Wind Farm modeling. The generation capacity of the wind farm GWF(t) at the instant 

of time t is determined by PWTi of each wind turbine i. In this case, the power PWTi depends 

on the wind SWt. In the proposed model we use Weibull simulation approaches for the wind 

speed, so Weibull model generates random values from the density function adjusted with 
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historical values. In the case of the power delivered by each wind turbine we use the non-

linear relationship between wind speed and wind turbine power. 

The wind speed is simulated with the Weibull model estimating approximately the 

shape and scale parameters of the probability distribution density function with µsw and σsw. 

The Weibull probability distribution function for wind speed v is denoted as f(v), β and δ 

are the shape and scale parameters of the distribution function respectively. 
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The inverse of cumulative probability distribution function (5) allows us to simulate 

the wind speed generating u uniformly distributed random numbers [0, 1] as shown in (6). 
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The power delivered by each wind turbine is estimated with the function (7). The non-

linear relationship between wind speed and wind turbine power is given by, 
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where Pr, Vci, Vr and Vco are nominal output power, wind speed necessary for start-up, wind 

speed corresponding to the nominal power of the wind turbine and cutting wind speed per 

wind turbine safety reasons respectively. 

The constants A, B, and C depend on Vci, Vr and Vco as shown in (8). 
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The delivered power of the wind farm is defined below as: 

  
1

if
WTN

WF i initial final

i

G t PWT t t t



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
  (9) 

where i = 1, 2, …, NWT. 

Photovoltaic solar farm modeling. The generation capacity GPV(t) of a photovoltaic 

solar farm at instant of time t is determined by PPVi of each photovoltaic panel i in the solar 

farm. In this case, the solar power PPVi, depends of solar radiation SRi (t). 

The literature shows a wide diversity of methods and models to simulate the behavior 

of SRi (t), in this paper the behavior of solar radiation is assumed as a known variable. The 

power output of a photovoltaic solar farm is proportional to the solar radiation in the area 

where it is located, and it is usual that there are weather stations in the places where the 

photovoltaic solar farm are to be installed, for this reason it is also assumed in the paper that 

the power output GPV(t) is a known variable. The photovoltaic solar farm has a typical 

configuration shown in fig. 2. In this paper it is assumed that each Array is independent. 

 

 

Fig. 2. Typical configuration of a photovoltaic solar farm 
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When the PPVi power delivered by each array i is known, the GPV(t) power delivered 

for the photovoltaic solar farm is defined as: 

  
1

if
NArray

PV i initial final

i

G t PPV t t t



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
  (10) 

where i = 1, 2, …, NArray (number of arrays in the photovoltaic solar farm). 

2.4. Vehicle-to-Grid 

The V2G has the function of controls the charge of the batteries connected to it. We 

can find five typical car-user profiles: 

Profile #1: People going to work with a possibility to charge their car at work. 

Profile #2: People going to work with a possibility to charge their car at work but with a 

longer ride. 

Profile #3: People going to work with no possibility to charge their car at work. 

Profile #4: People staying at home. 

Profile #5: People working on a night shift. 

The State of Charge (SOC) of the battery is necessary to know because with this 

information we can determine the best car-user profile for the grid. To simulate the battery 

behavior, a circuit was implemented that allows estimating the behavior of: SOC (%), 

temperature in the battery (Celsius degrees), current (Ampere) and voltage (Volt). 

In this paper, the battery model used relate the voltage according to the charge with 

the following relationship, 

 
 

0
1 1

SOC
V V

SOC

 
     

 (11) 

where SOC (state-of-charge) is the ratio of current charge to rated battery capacity; V0 is the 

voltage when the battery is fully charged at no load, as defined by the Nominal voltage 

parameter; β is a constant that is calculated, so the battery voltage is V1 when the charge is 

AH1. 

The equation defines an approximate relationship between voltage and remaining 

charge. This approximation replicates the increasing rate of voltage drop at low charge 

values and ensures that the battery voltage becomes zero when the charge level is zero. The 

advantage of this model is that it requires few parameters, which are readily available on 

most datasheets. 

In the paper, the battery model used provide additional parameters to define battery 

behavior according to the temperature. The extended equations for the voltage when the 

thermal port is exposed are, 
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   0 0 11T VV V T T    (13) 

where T is the battery temperature; T1 is the nominal measurement temperature; λV is the 

parameter temperature dependence coefficient for V0 and β is calculated in the same way 

before, using the temperature-modified nominal voltage V0T. 

The internal series resistance, self-discharge resistance, and any charge-dynamic 

resistances are also functioning of temperature: 

   11T RR R T T    (14) 

where λR is the parameter temperature dependence coefficient. 

All the temperature dependence coefficients are determined from the corresponding 

values you provide at the nominal and second measurement temperatures. If it is including 

charge dynamics in the model, the time constants vary with temperature in the same way. 

The battery temperature is determined from a summation of all the ohmic losses 

included in the model: 

 

2

,

,

T i
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i T i
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M T

R
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where Mth is the battery thermal mass; i corresponds to the ith ohmic loss contributor; The 

losses include: Series resistance, Self-discharge resistance, First charge dynamics segment, 

Second charge dynamics segment, VT,i is the voltage drop across resistor i and RT,i is 

resistor i. 

2.5. Load 

The load is composed of residential load or/and industrial load (see fig. 3). The 

residential load and industrial load follow a consumption profile with a given power factor. 
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Fig. 3. System load 

 

The load curve model is usually represented by the Daily Peak Load Variation Curve 

(DPLVC) or the Hourly Load Duration Curve (LDC). We used LDC because integrates the 

load curve chronological behavior. 

2.6. Scenario 

The simulation lasts 24 hours. The solar intensity follows a normal distribution where 

the highest intensity is reached at midday. The wind varies greatly during the day and has 

multiple peaks and lows. The residential load and industrial load follow a typical pattern 

like a normal household consumption. The consumption is low during the day and increases 

to a peak during the evening, and slowly decreases during the night. 

2.7. Simulation 

In this paper, we consider a diesel generator with generating capacity C1 = 15 MW 

(acting as the base power generator all day, 24 hours). 

The PV farm have GPV = 8 MW peak generating capacity and when we consider the 

size of the area covered by the PV farm, the efficiency of the solar panels and the irradiance 

data we obtain fig. 4. We used the numerical vector (see fig. 4) to simulate the capacity 

behavior of the PV farm during the day. 

In the case of the wind farm, we calculate the shape and scale parameters of the Weibull 

probability distribution density function to simulate the wind, assuming µSW = 5.4 m/s and 

σSW = 2.3. The wind turbine used in this paper has a nominal output power Pr = 4.5 MW, 

the cut-in speed wind Vci = 4 m/s, the rated speed wind Vr = 10 m/s and the cut-out wind 

speed Vco is 25 m/s. Figure 5 show the capacity behavior of the wind farm. 
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Fig. 4. Solar power 

 

 

Fig. 5. Wind power 

 

The V2G system installed next to the last part of the system which is the load of the 

grid have the capacity of 4 MW. There are 100 electric vehicles and each car have the 

capacity of 40 kW. In this paper, we present the optimization of charging profiles of the 

potential users of these charging stations. We analyzed the charging profiles in a power grid 

with renewables sources of energy and we determine the optimal charging profiles for the 

power grid based on maximizing the energy delivered by renewable sources of energy 

during the day. In fact, we consider that V2G system as a load, and based in this, we 

assuming the below mathematical model for controlled loads (V2G): 

 2

when
( )
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j j j

j

j j so so ot

V G

P SOC t t t t
P t

j

   
 


 (16) 

where SOCj is the State of Charge of the electrical car j at the time instant t, Pj is the power 

consumption of the electrical car j, tsoj is the start time of consumption of the electrical car 

j, totj is the operating consumption time of the electrical car j. 

Based on the assumption that we can control the load (V2G) with a smart grid, we 

propose an optimization model to determine the optimal charging profiles maximizing the 
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energy delivered by renewable sources of energy during the day. The objective function is 

defined as: 
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where N is the samples number of the simulation window and D(t) is the residential and/or 

industrial load of the system. 

In this paper, we focus the attention in the validation of the proposal model. The 

objective function is non-linear stochastics function, for this reason, we use GA and PSO 

algorithmic for the problem solution. In this scenario, the V2G system fleet has 100 

electrical car and each one has 40 kW of capacity. For the validation of the model, we 

assuming a scenario (no real) where every car need charge the battery for 8 hours to 

complete the full charge, are available to charge during all day and the smart grid can control 

the best moment to charge the battery of each car. 

Figure 6 show the convergence process of both algorithms. PSO algorithm (local 

search) in few iterations find a local minimum with a good solution for this problem. On 

another hands, GA algorithm (global search) needs more iterations, find betters solutions 

that PSO algorithm, but the difference is not significative. 

 

 

Fig. 6. Convergence process 

3. Conclusions 

In the recent years, the number of electric vehicles (EVs) on the road have been rapidly 

increasing. Charging this increasing number of EVs is expected to have an impact on the 
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power grid especially if high charging powers and opportunistic charging are used. Multiple 

papers have observed that the charging stations are used by multiple users during the day. 

In a context where electric mobility is gaining increasing importance as a more sustainable 

solution for urban environments, this work presents the optimization of charging profiles of 

the potential users of these charging stations. We analyzed the charging profiles in a power 

grid with renewables sources of energy and we determine the optimal charging profiles for 

the power grid based on maximizing the energy delivered by renewable sources of energy. 
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