PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of electric current density on specific denitrification rate of and nitrogen removal rate in electrochemical and electrobiological rotating contactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ gęstości prądu elektrycznego na właściwą szybkość denitryfikacji i na szybkość usuwania azotu w elektrochemicznym i elektrobiologicznym złożu obrotowym
Języki publikacji
EN
Abstrakty
EN
This study aimed to determine the influence of the electric current density on the rate of nitrogen compounds removal (rN) and the specific rate of denitrification (rD) in a rotating electrochemical disk contractor (RECDC) and a rotating electro-biological disk contactor (REBDC). In REBDC and RECDC, the cathode consisted of disks with immobilized biomass and disk, from which biofilm was periodically removed, respectively. An aluminum anode was mounted in contactor chambers. The study was conducted using synthetic wastewater with characteristics similar to wastewater from soilless cultivation of tomatoes. The first stage of the study determined rN and rD in the RECDC. The second stage determined rN and rD in the REBDC. Four hydraulic retention times (HRT) were tested: 4 h, 8 h, 12 h, and 24 h, with electric current densities of 0.63 A/m2, 1.25 A/m2, 2.50 A/m2, 5.00 A/m2, and 10.00 A/m2. In RECDC, a linear dependency was observed between rN and current density in the examined HRTs, whereas in REBDC, a logarithmic dependency was confirmed between rN and current density. In both contactors, an exponential dependency was observed between rD and current density. The specific rate of denitrification decreased when the current density and HRT were increased. The study showed that, in both contactors, the rate of total nitrogen removal increased when the current density was increased and the HRT was decreased.
PL
Celem pracy było określenie wpływu gęstości prądu na szybkość usuwania związków azotu (rN) i na specyficzną szybkość procesu denitryfikacji (rD) w elektrochemicznym tarczowym złożu obrotowym (RECDC) i elektrobiologicznym tarczowym złożu obrotowym (REBDC). W elektrochemicznym tarczowym złożu obrotowym (RECDC) i elektrobiologicznym tarczowym złożu obrotowym (REBDC) katodę stanowiły odpowiednio tarcze pokryte błoną biologiczną i tarcze z których okresowo usuwano błonę biologiczną. Aluminowa anoda była umieszczona w zbiornikach złoża. Badania przeprowadzono na ściekach o wskaźnikach fizykochemicznych podobnych do ścieków z bezglebowej uprawy pomidorów. W pierwszym etapie badań określono wartości rN and rD w RECDC podczas gdy w drugim w REBDC. Zastosowano cztery wartości hydraulicznego czasu zatrzymania (HRT): 4 h, 8 h, 12 h and 24 h dla następujących gęstości prądu: 0.63 A/m2, 1.25 A/m2, 2.50 A/m2, 5.00 A/m2 and 10.00 A/m2. W elektrochemicznym złożu zaobserwowano liniową zależność pomiędzy rN i gęstością prądu, podczas gdy w złożu elektrobiologicznym zależność logarytmiczną. Dla obu złóż stwierdzono wykładniczą zależność pomiędzy rD i gęstością prądu. Specyficzną szybkość procesu denitryfikacji malała wraz ze wzrostem gęstości prądu i HRT. Badania pokazały, że w obu złożach, elektrochemicznym i elektrobiologicznym szybkość usuwania związków azotu obniżała się wraz ze wzrostem gęstości prądu i obniżaniem HRT.
Rocznik
Strony
23--32
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • 1. Dash, B.P. & Chaudhari, S. (2005). Electrochemical denitrification of simulated ground water, Water Research, 39, pp. 4065-4072, DOI: https://doi.org/10.1016/j.watres.2005.07.032.
  • 2. Deng, S., Desheng, L., Yang, X., Xing, W., Li, J. & Zhang, Qi. (2016). Biological denitrification process based on the Fe(0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition, Bioresource Technology, 219, pp. 677-686, DOI: 10.1016/j.biortech.2016.08.014.
  • 3. Elazzouzi, M., Haboubi, K. & Elyoubi, M.S. (20019). Enhancement of electrocoagulation-flotation process for urban wastewater treatment using Al and Fe electrodes: techno-economic study, Materials Today: Proceedings, 13, pp. 549-555.
  • 4. Feleke, Z., Araki, K., Sakakibara, Y., Watanabe, T. & Kuroda, M. (1998). Selective reduction of nitrate to nitrogen gas in a biofilm-electrode reactor, Water Research, 32, pp. 2728-2734, DOI: 10.1016/S0043-1354(98)00018-9.
  • 5. Feleke, Z. & Sakakibara, Y. (2002). A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide, Water Research, 36, pp. 3092-3102, DOI: 10.1016/S0043-1354(01)00538-3.
  • 6. Ghafari, S., Hasan, M. & Aroua, M.K. (2009). Improvement of autohydrogenotrophic nitrite reduction rate through optimization of pH and bicarbonate dose in a batch experiments, Journal of Bioscience and Bioengineering, 107, pp. 275-280.
  • 7. Govindan, K., Noel, M. & Mohan, R. (2015). Removal of nitrate ion from water by electrochemical approaches, Journal of Water Process Engineering, 6, pp. 58-63, DOI: 10.1016/j.jwpe.2015.02.008.
  • 8. Hao, R.X., Li, S.M., Li, J.B. & Meng C.C. (2013). Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community, Bioresource Technology, 143, pp. 178-186, DOI: 10.1016/j.biortech.2013.06.001
  • 9. He, Y., Wang, Y. & Song, X. (2016). High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER), Bioresource Technology, 203, pp. 245-251, DOI: https://doi.org/10.1016/j.biortech.2015.12.060.
  • 10. Huang, W., Zhang, B., Li, M., Chen, N., Feng, C. & Zhang, Z. (2013). An electrochemical process intensified by bipolar iron particles for nitrate removal from synthetic groundwater, Journal of Solid State Electrochemistry, 17, pp. 1013-1020, DOI: 10.1007/s10008-012-1956-4.
  • 11. Islam, S. & Suidan, M.T. (1998). Electrolytic denitrification: long term performance and effect of current intensity, Water Research, 32, pp. 528-536, DOI: 10.1016/S0043-1354(97)00286-8.
  • 12. Kabdaşlı, I., Arslan-Alaton, I., Ölmez-Hancı, T. & Tünay, O. (2012). Electrocoagulation applications for industrial wastewaters: a critical review, Environmental Technology Review, 1, pp. 2-45, DOI: 10.1080/21622515.2012.715390.
  • 13. Katsounaros, I. & Kyriacou, G. (2008). Influence of nitrate concentration on its electrochemical reduction on tin cathode: Identification of reaction intermediates, Electrochimica Acta, 53, pp. 5477-5484, DOI: 10.1016/j.electacta.2008.03.018.
  • 14. Kłodowska, I., Rodziewicz, J. & Janczukowicz, W. (2015). Effect of technological and environmental parameters on electrolytically aided denitrification using the anaerobic rotating multi-disc reactor, Ecological Engineering, 85, pp. 223-225, DOI:10.1016/j.ecoleng.2015.10.012.
  • 15. Koparal, A.S. & Öütveren, U.B. (2002). Removal of nitrate from water by electroreduction and electrocoagulation, Journal of Hazardous Materials, 89(1), pp. 83-94, DOI: 10.1016/S0304-3894(01)00301-6.
  • 16. Lacasa, E., Cañizares, P., Sáez, C., Fernández, F.J. & Rodrigo, M.A. (2011). Removal of nitrates from groundwater by electrocoagulation, Chemical Engineering Journal, 171, pp. 1012-1017, DOI: 10.1016/j.cej.2011.04.053.
  • 17. Lee, K.C. & Rittmann, B.E. (2000). A novel hollow-fiber membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water, Water Science and Technology, 41, pp. 219-226, DOI: 10.2166/wst.2000.0448.
  • 18. Lee, K.C. & Rittmann, B.E. (2002). Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Research, 36, pp. 2040-2052, DOI: 10.1016/s0043-1354(01)00425-0.
  • 19. Li, M., Feng, C.P., Zhang, Z.N., Lei, X.H., Chen, R.Z., Yang, Y.N. & Sugiura, N. (2009). Simultaneous reduction of nitrate and oxidation by-products using electrochemical method, Journal of Hazardous Materials, 171, pp. 724-730, DOI: 10.1016/j.jhazmat.2009.06.066.
  • 20. Mielcarek, A., Rodziewicz, J., Janczukowicz, W. & Dobrowolski, A. (2019). Analysis of wastewater generated in greenhouse soilless tomato cultivation in central Europe, Water, 11, 2538, pp. 1-10, DOI: 10.3390/w11122538.
  • 21. Mousavi, S.A.R., Ibrahim, S., Aroua, M.K. & Ghafari S. (2012). Development of nitrate elimination by autohydrogrnotrohic bacteria in bio-electrochemical reactors - a review, Biochemical Engineering Journal, 67, pp. 251-264.
  • 22. Park, H.I., Kim, D.K., Choi, Y. & Pak, D. (2005). Nitrate reduction using an electrode as direct electron donor in a biofilm-electrode reactor, Process Biochemistry, 40, pp. 3383-3388, DOI: 10.1016/j.procbio.2005.03.017.
  • 23. Park, H.I., Kim, J.S., Kim, D.K., Choi, Y.J. & Pak, D. (2006). Nitrate-reducing bacterial community in a biofilm-electrode reactor, Enzyme and Microbial Technology, 39, pp. 453-458.
  • 24. Polatides, C., Dortsiou, M. & Kyriacou, G. (2005). Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis, Electrochimica Acta, 50, pp. 5237-5241, DOI: 10.1016%2Fj.electacta.2005.01.057.
  • 25. Prosnansky, M., Sakakibara, Y. & Kuroda, M. (2002). High-rate denitrification and SS rejection by biofilmelectrode reactor (BER) combined with microfiltration, Water Research, 36, pp. 4801-4810, DOI: 10.1016/s0043-1354(02)00206-3.
  • 26. Rodziewicz, J., Janczukowicz, W., Mielcarek, A., Filipkowska, U., Kłodowska, I., Ostrowska, K. & Duchniewicz, S. (2015). Anaerobic rotating disc batch reactor nutrient removal process enhanced by volatile fatty acid addition, Environ. Technol. 36, pp. 953-958, DOI: 10.1080/09593330.2014.969328.
  • 27. Rodziewicz, J., Mielcarek, A., Janczukowicz, W., Jóźwiak, T., Struk-Sokołowska, J. & Bryszewski, K. (2019). The share of electrochemical reduction, hydrogenotrophic and heterotrophic denitrification in nitrogen removal in rotating electrobiological contactor (REBC) treating wastewater from soilless cultivation systems, Science of the Total Environment, 683, pp. 21-28, DOI: 10.1016/j.scitotenv.2019.05.239.
  • 28. Sakakibara, Y. & Kuroda, M. (1993). Electric prompting and control of denitrification, Biotechnology and Bioengineering, 42, pp. 535-537, DOI: 10.1002/bit.260420418.
  • 29. Sakakibara, Y., Tanaka, T., Ihara, K., Watanabe, T. & Kuroda, M. (1995). An in-situ denitrification of nitrate-contaminated groundwater using electrodes, Proc. Environ. Eng. Res., 32, pp. 407-415,
  • 30. Sakakibara, Y., Araki, K., Watanabe, T. & Kuroda, M. (1997). The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater, Water Science and Technology, 36, pp. 61-68, DOI: 10.1016/S0273-1223(97)00323-5.
  • 31. Saxena, P. & Bassi, A. (2013). Removal of nutrients from hydroponic greenhouse effluent by alkali precipitation and algae cultivation method, Journal of Chemical Technology & Biotechnology, 88, pp. 858-863, DOI: 10.1002/jctb.3912.
  • 32. Shin, J.H., Sang, B.I., Chung, Y.C. & Choung, Y.K. (2008). A novel CSTR-type of hollow fiber membrane biofilm reactor for consecutive nitrification and denitrification, Desalination, 221, pp. 526-533, DOI: 10.1016/j.desal.2007.01.113.
  • 33. Shin, J.H., Sang, B.I., Chung, Y.C. & Choung, Y.K. (2005). The removal of nitrogen using an autotrophic hybrid hollow-fiber membrane biofilm reactor, Desalination, 183, pp. 447-454.
  • 34. Terada, A., Kaku, S., Matsumoto, S. & Tsuneda, S. (2006). Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane, Biochemical Engineering Journal, 31, pp. 84-91, DOI: 10.1016/j.bej.2006.06.004.
  • 35. Vasiliadou, I.A., Pavlou, S. & Vayenas, D.V. (2006). A kinetic study of hydrogenotrophic denitrification, Process Biochemistry, 41, pp. 1401-1408, DOI: 10.1016/j.procbio.2006.02.002.
  • 36. Wang, H. & Qu, J. (2003). Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment, Water Research, 37, pp. 3767-3775, DOI: 10.1016/S0043-1354(03)00249-5.
  • 37. Watanabe, T., Motoyama, H. & Kuroda, M. (2001). Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process, Water Research, 35, pp. 4102-4110, DOI: 10.1016/s0043-1354(01)00158-0.
  • 38. Xia, S., Zhang, Y. & Zhong, F. (2009). A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water, Bioresource Technology, 100, pp. 6223-6228, DOI: 10.1016/j.biortech.2009.07.002.
  • 39. Yehya, T., Balla, W., Chafi, M., Audonnet, F., Vial, C., Essadki, A. & Gourich, B. (2015). Assessment of denitrification using electrocoagulation process, The Canadian Journal of Chemical Engineering, 93(2), pp. 241-248, DOI: 10.1002/cjce.22112.
  • 40. Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z. & Sugiura, N. (2011). Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor, Journal of Hazardous Materials, 192, pp. 1033-1039, DOI: 10.1016/j.jhazmat.2011.06.008.
  • 41. Zhou, M., Fu, W., Gu, H. & Lei, L. (2007). Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor, Electrochimica Acta, 52, pp. 6052-6059, DOI: 10.1016/j.electacta.2007.03.064.
  • 42. Zhou, M., Wang, W. & Chi, M. (2009). Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor, Bioresource Technology, 100, pp. 4662-4668, DOI: 10.1016/j.biortech.2009.05.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aee689d9-acd2-45d0-918f-9fa161ff4cb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.