PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on Control Strategies for a Single-Phase Photovoltaic Inverter Using PSCAD/EMTDC Software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last decades, electric power produced through photovoltaic conversion has been increasing because of the need to reduce fossil fuel burning. Recently, photovoltaic systems have become more competitive and their role in the renewable energies market share is steadily gaining in importance. Improvements in the power electronics employed in the DC/AC conversion are topics of interest in the quest for more efficient and eventually reduced-cost inverters. The goal of this paper is to perform an investigation of control strategies and propose a topology for a single-phase DC/AC converter for photovoltaic arrays using the simulation software Power System Computer Aided Design/Electromagnetic Transient Design and Control (PSCAD/EMTDC). The circuit proposed in this paper employs an isolating transformer to a grid-connected photovoltaic inverter. The control strategy proposed uses the instantaneous reactive power theory (p–q theory) and phase-locked loop (PLL). The p-q theory uses two virtual axes in the Park Transformation, which provide to the control system a good dynamic response, accuracy, and decoupling between the control and power system. Computer simulations using the electromagnetic transient software PSCAD show the efficiency of the proposed strategy for a single-phase inverter. The control strategy and topology are quite simple and easy to implement in the future using a Digital Signal Processor (DSP). The results provide insights into new power electronics solutions, which can improve the efficiency and efficacy of the current available in DC/AC converters for photovoltaic systems.
Wydawca
Rocznik
Strony
75--99
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Post-Graduation Program in Mining, Metallurgical and Materials Engineering, Solar Energy Laboratory (LABSOL), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
  • Post-Graduation Program in Mining, Metallurgical and Materials Engineering, Solar Energy Laboratory (LABSOL), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Bibliografia
  • Andish, M. M, Jalilzadeh, T., Alishah, R. S. and Sabahi, M. (2016). Leakage Current Elimination of Grid-Connected PV Panels Using an Improved Non-Isolated DC-AC Heric Converter. In The International Conference on New Researches in Engineering Sciences-RKES 2016, Tehran: University of Tehran.
  • Barbi, P. I. (2008). Projetos de Inversores. Edited by P. de P. em E. E. da UFSC. Santa Catarina.
  • Chettibi, N. and Mellit, A. (2014). Simulation Modelling Practice and Theory FPGA-Based Real Time Simulation and Control of Grid-Connected Photovoltaic Systems. Simulation Modelling Practice and Theory, 43, pp. 34–53. doi: 10.1016/j.simpat.2014.01.004.
  • Dousoky, G. M., Ahmed, E. M. and Shoyama, M. (2013). MPPT Schemes for Single-Stage Three-Phase Grid-Connected Photovoltaic Voltage-Source Inverters. Proceedings of the IEEE International Conference on Industrial Technology, pp. 600–605. doi: 10.1109/ICIT.2013.6505739.
  • Eltawil, M. A. and Zhao, Z. (2013). MPPT Techniques for Photovoltaic Applications. Newable and Sustainable Energy Reviews, 25, pp. 793–813. doi: 10.1016/j.rser.2013.05.022.
  • Gajewski, P. and Pienkowski, K. (2016). Performance of Sensorless Control of Permanent Magnet Synchronous Generator in Wind Turbine System. Power Electronics and Drives, 1(2), pp. 165–174. doi: 10.5277/ped160210.
  • Gerardo, V. G., Raymundo, M.-R. and Miguel, S. Z. (2015). High Efficiency Single-Phase Transformer-Less Inverter for Photovoltaic Applications. Ingeniería, Investigación y Tecnología, 16(2), pp. 173–184. doi: 10.1016/j.riit.2015.03.002.
  • Guo, B., Su, M., Sun, Y., Wang, H., Dan, H., Tang, Z., Cheng, B. (2019) A Robust Second-Order Sliding Mode Control for Single-Phase Photovoltaic Grid-Connected Voltage Source Inverter. IEEE Access, 7, pp. 53202–53212. doi: 10.1109/ACCESS.2019.2912033.
  • Hassaine, L. and Bengourina, M. R. (2020). Control Technique for Single Phase Inverter Photovoltaic System Connected to the Grid. Energy Reports, 6, pp. 200–208. doi: 10.1016/j.egyr.2019.10.038.
  • Hairi, M. H. (2019). Design and Modelling of a Three-Phase Grid-Connected Photovoltaic for Low Voltage Network using PSCAD Software. International Journal of Electrical Engineering and Applied Sciences, 2(1), pp. 1–6.
  • Hart, D. W. (2010). Power Electronics. New York: The McGraw-Hill Companies, Inc.
  • Jalilzadeh, T., Hagh, M. T. and Sabahi, M. (2018). Analytical Study and Simulation of a Transformer-Less Photovoltaic Grid-Connected Inverter With a Delta-Type Tri-Direction Clamping Cell for Leakage Current Elimination. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.Vol. 37 Issue: 2, pp.814-831.
  • Johnson, B. A. (2013). Modeling and Analysis of a Pv Grid-Tied Smart Inverter’s Support Functions. CA: The Faculty of California State University.
  • Kwasny, L. and Zieliński, D. (2021). Control of a Four-Wire Hybrid Prosumer Converter for Balancing Utility Grids. Power Electronics and Drives, 6(1), pp. 1–11. doi: 10.2478/pead-2021-0001.
  • Luo, F. L. and Ye, H. (2017) Advanced DC/AC Inverters Applications in Renewable Energy. Edited by C. P. T. & F. Group. Boca Raton: CRC Press. doi: 10.1201/b13750-8.
  • Manitoba HVDC Research Centre. (2018). Photovoltaic Example. Available at: https://www.pscad.com/knowledge-base/article/176.
  • Massawe, H. B. (2013). Grid Connected Photovoltaic Systems with SmartGrid Functionality. Trondheim: Norwegian University of Science and Technology.
  • Monfared, M., Sanatkar, M. and Golestan, S. (2012). Direct Active and Reactive Power Control of Single-Phase Grid-Tie Converters. IET Power Electronics, 5(8), pp. 1544–1550. doi: 10.1049/iet-pel.2012.0131.
  • Pinho, J. T. and Galdino, M. A. (2014). Manual de Engenharia para Sistemas Fotovoltaicos. Ediouro Gráfica e Editora. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Manual+de+engenharia+para+sistemas+fotovoltaicos#0. [Accessed 5 Apr. 2021].
  • Rezk, H. and Eltamaly, A. M. (2015). A Comprehensive Comparison of Different MPPT Techniques for Photovoltaic Systems. Solar Energy, 112, pp. 1. doi: 10.1016/j.solener.2014.11.010.
  • Roomi, M. M. (2019). An Overview of Carrier-based Modulation Methods for Z-Source Inverter. Power Electronics and Drives, 4(1), pp. 15–31. doi: 10.2478/pead-2019-0007.
  • Salem, M. and Atia, Y. (2015). Control Scheme Toward Enhancing Power Quality and Operational Efficiency af Single-Phase Two-Stage Grid-Connected Photovoltaic Systems. Journal of Electrical Systems and Information Technology, 2(3), pp. 314–327. doi: 10.1016/j.jesit.2015.05.002.
  • Simões, M. G. and Farret, F. A. (2017). Modeling Power Electronics and Interfacing Energy Conversion Systems. New Jersey: John Wiley & Sons.
  • Sundar, G., Karthick, N. and Reddy, S. R. (2014). High Step-Up DC-DC Converter for AC Photovoltaic Module with MPPT Control. Journal of Electrical Engineering, 65(4), pp. 248–253. doi: 10.2478/jee-2014-0038.
  • Website - Canadian (inverter) (2021). Available at: https://www.canadiansolar.com/inverter/[Accessed 5 Apr. 2021].
  • Website - Canadiansolar (module) (2021). Available at: https://www.canadiansolar.com/bihiku/ [Accessed 5 Apr. 2021].
  • Website - Itron (2021) Available at: https://www.itron.com/br/solutions/product-catalog/ace6000 [Accessed 5 Apr. 2021].
  • Xiao, W. (2017). Photovoltaic Power System - Modeling, Design, and Control, Photovoltaic Power System. Edited by U. of Sydney. New Jersey: John Wiley & Sons Ltd. doi: 10.1002/9781119280408.
  • Youssef, M., Boubahri, C., Fetni, S. and Aloui, F. (2020). Simulation and Design of a Single Phase Inverter with Digital PWM Issued by an Arduino board. ResearchGate. doi: 10.17577/IJERTV9IS080237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aeddc9aa-8f30-4042-b92f-da6cb9f462e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.