PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the patellar button thickness on the knee flexion after total knee arthroplasty

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the main problems of knee replacement is the limit of knee flexion. This study focuses on the knee implant and the patellar component currently in use in total knee arthroplasty, analyzing the influence of patellar thickness on the degree of knee flexion following surgery. Methods: A kinematics study was performed to evaluate whether an optimal patellar thickness can be identified, which enables the maximum flexion angle to be achieved. Using TC images, a healthy model was built. On this basis, a model of a knee joint which had undergone total knee arthroplasty using a Legion PS prosthesis was constructed. Initially, the standard thickness of patellar implant (9 mm) was used to build the model; then several different patellar implant thicknesses (in the range of 5–15 mm) were analyzed. Results: The results show a non-linear trend: a button thickness of less than 9 mm does not change the flexion angle, whereas a button thickness of over 9 mm results in a loss of flexion. The flexion loss is significant in the first two additions of thicknesses but negligible in the last ones. Conclusions: In the case studied, flexion reduction is not linearly proportional to the patellar thickness. The outcome of total knee arthroplasty is considered to be satisfactory with the standard patellar button. The results of this study could be used to compare the kinematics with other total prosthesis and patellar implants, and should enable the optimization of the patellar residue bone thickness to obtain deep flexion.
Rocznik
Strony
121--134
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of Bio-inspired Nanomechanics “Giuseppe Maria Pugno”, Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Turin, Italy
autor
  • Laboratory of Bio-inspired Nanomechanics “Giuseppe Maria Pugno”, Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Turin, Italy
autor
  • Laboratory of Bio-inspired Nanomechanics “Giuseppe Maria Pugno”, Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Turin, Italy
  • Department of Othopaedics and Traumatology, Humanitas Gradenigo Hospital, Turin, Italy
  • Department of Othopaedics and Traumatology, Humanitas Gradenigo Hospital, Turin, Italy
Bibliografia
  • [1] ABDEL-RAHMAN E.M., HEFZY M.S., Three-dimensional dynamic behaviour of the human knee joint under impact loading, Med. Eng. Phys., 1998, 20(4), 276–290.
  • [2] ABOLGHASEMIAN M., SAMIEZADEH S., STERNHEIM A., BOUGHERARA H., BARNES C.L., BACKSTEIN D.J., Effect of patellar thickness on knee flexion in total knee arthroplasty: A biomechanical and experimental study, J. Arthroplasty, 2014, 29(1), 80–84.
  • [3] BENDJABALLAH M.Z., SHIRAZI-ADL A., ZUKOR D.J., Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis, Knee, 1995, 2(2), 69–79.
  • [4] BENGS B.C., SCOTT R.D., The Effect of Patellar Thickness on Intraoperative Knee Flexion and Patellar Tracking in Total Knee Arthroplasty, J. Arthroplasty, 2006, 21(5), 650–655.
  • [5] BLAIN J.M., The Complete Guide to Blender Graphics: Computer Modeling & Animation, A.K. Peters (ed.), 3rd ed. CRC Press, 2016.
  • [6] BLOEMKER K.H., GUESS T.M., MALETSKY L.P., DODD K.A., Computational Knee Ligament Modeling Using Experimentally Determined Zero-Load Lengths, Open Biomed. Eng. J., 2012, 6(1), 33–41.
  • [7] CHANG K.-H., Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2017. SDC Publications, 2017.
  • [8] DHOLLANDER A.A.M., BASSENS D., VICTOR J., VERDONK P., Patellar tilt and thickness do not influence postoperative flexion in a high-flex design total knee arthroplasty, Knee Surgery, Sport, Traumatol. Arthrosc., 2013, 21(12), 2817–2822.
  • [9] FARAHINI H., MOGHTADAEI M., BAGHERI A., AKBARIAN E., Factors influencing range of motion after total knee arthroplasty, Iran. Red. Crescent. Med. J., 2002, 14(7), 417–421.
  • [10] GrabCAD. GrabCAD library. Retrieved from http://grabcad.com, 2018.
  • [11] HAJDUK G., NOWAK K., SOBOTA G., KUSZ D., KOPEĆ K., BŁASZCZAK E., CIELIŃSKI Ł., et al., Kinematic gait parameters changes in patients after total knee arthroplasty. Comparison between cruciate-retaining and posteriorsubstituting design, Acta Bioeng. Biomech., 2016, 18(3), 137–142.
  • [12] KIM A.D., SHAH V.M., SCOTT R.D., The Effect of Patellar Thickness on Intraoperative Knee Flexion and Patellar Tracking in Patients With Arthrofibrosis Undergoing Total Knee Arthroplasty, J. Arthroplasty, 2016, 31(5), 1011–1015.
  • [13] KOH J.S.B., YEO S.J., LEE B.P.H., LO N.N., SEOW K.H., TAN S.K., Influence of patellar thickness on results of total knee arthroplasty: Does a residual bony patellar thickness of ≤12 mm lead to poorer clinical outcome and increased complication rates?, J. Arthroplasty, 2002, 17(1), 56–61.
  • [14] KUBÍCEK M., FLORIAN Z., Stress strain analysis of knee joint, Eng. Mech., 2009, 16(5), 315–322.
  • [15] LEE Q.J., YEUNG S.T., WONG Y.C., WAI Y.L., Effect of patellar thickness on early results of total knee replacement with patellar resurfacing, Knee Surgery, Sport, Traumatol. Arthrosc., 2014, 22(12), 3093–3099.
  • [16] LI P.H., WONG Y.C., WAI Y.L., Knee flexion after total knee arthroplasty, J. Orthop. Surg., 2007, 15(2), 149–153.
  • [17] MATH K.R., GHELMAN B., POTTER H.G., Imaging of the Patellofemoral Joint, [in:] The Patella, G.R. Scuderi (Ed.), Springer-Verlag, New York, 1995, 83–90.
  • [18] Mimics. Mimics User Manual. Version 13.1. Leuven (Belgium): Materialise, 2011.
  • [19] NÄGERL H., FROSCH K.H., WACHOWSKI M.M., DUMONT C., ABICHT C., ADAM P., KUBEIN-MEESENBURG D., A novel total knee replacement by rolling articulating surfaces. In vivo functional measurements and tests, Acta Bioeng. Biomech., 2008, 10(1), 55–60.
  • [20] O’BRIEN T.D., REEVES N.D., BALTZOPOULOS V., JONES D.A., MAGANARIS C.N., Mechanical properties of the patellar tendon in adults and children, J. Biomech., 2010, 43(6), 1190–1195.
  • [21] PASTIDES P.S., SHENOY R., NATHWANI D., (iv) The patella in total knee replacement, Orthop. Trauma, 2013, 27(6), 372–378.
  • [22] PIERCE T.P., JAUREGUI J.J., CHERIAN J.J., ELMALLAH R.K., HARWIN S.F., MONT M.A., Is There an Ideal Patellar Thickness Following Total Knee Arthroplasty?, Orthopedics, 2016, 39(1), 187–192.
  • [23] SHENOY R., PASTIDES P.S., NATHWANI D., (iii) Biomechanics of the knee and TKR, Orthop. Trauma, 2013, 27(6), 364–371.
  • [24] Smith&Nephew. (n.d.), Smith & Nephew Legion prosthesis. Retrieved from http://www.smith-nephew.com/professional/products/all-products/legion/
  • [25] STÄUBLI H.U., SCHATZMANN L., BRUNNER P., RINCÓN L., NOLTE L.P., Mechanical Tensile Properties of the Quadriceps Tendon and Patellar Ligament in Young Adults, Am. J. Sports Med., 1999, 27(1), 27–34.
  • [26] VANDENNEUCKER H., LABEY L., VICTOR J., SLOTEN J., VANDER, DESLOOVERE K., BELLEMANS J., Patellofemoral arthroplasty influences tibiofemoral kinematics: the effect of patellar thickness, Knee Surgery, Sport, Traumatol. Arthrosc., 2014, 22(10), 2560–2568.
  • [27] WL3D. (n.d.) WL3D. Retrieved from http://www.wl3d.it
  • [28] WOO S.L.-Y., JOHNSON G.A., SMITH B.A., Mathematical Modeling of Ligaments and Tendons, J. Biomech. Eng., 1993, 115(4), 468–473.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aedd35b4-fe3c-46de-a8c4-51603084367c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.