Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The classification of the phase portraits is one of the classical and difficult problems in the qualitative theory of polynomial differential systems in R2, particularly for quadratic systems. Even with the hundreds of studies on the topology of real planar quadratic vector fields, fully characterizing their phase portraits is still a difficult problem. This paper is devoted to classifying the phase portraits of two polynomial vector fields with two usual invariant algebraic curves, by investigating the geometric solutions within the Poincaré disc. One can notice that these systems yield 26 topologically different phase portraits.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220218
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Department of Mathematics, Mathematical Analysis and Applications Laboratory, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj 34030, El Anasser, Algeria
autor
- Department of Mathematics, Mathematical Analysis and Applications Laboratory, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj 34030, El Anasser, Algeria
Bibliografia
- [1] F. Dumortier, J. Llibre, and J. C. Artés, Qualitative theory of planar differential systems, Springer-Verlag, Universitext (UTX), 2006, DOI: https://doi.org/10.1007/978-3-540-32902-2.
- [2] J.C. Artés and J. Llibre, Quadratic Hamiltonian vector fields, J. Differential Equations 107 (1994), no. 1, 80–95, DOI: https://doi.org/10.1006/jdeq.1994.1004.
- [3] J. C. Artés, J. Llibre, D. Schlomiuk, and N. Vulpe, Geometric Configurations of Singularities of Planar Polynomial Differential Systems, Birkhäuser Cham, Basel, 2021, DOI: https://doi.org/10.1007/978-3-030-50570-7.
- [4] A. Belfar and R. Benterki, Qualitative dynamics of quadratic systems exhibiting reducible invariant algebraic curve of degree 3, Palestine J. Math. 11 (2021), no. II, 1–12, https://pjm.ppu.edu.
- [5] A. Belfar and R. Benterki, Qualitative dynamics of quadratic polynomial differential system exhibiting an algebraic cubic first integral. Submitted (2022).
- [6] I. V. Nikolaev and N. Vulpe, Topological classification of quadratic systems with a unique finite second order singularity with two zero eigenvalues, Bul. Acad. ŞtiinÅče Repub. Mold Mat. 11 (1993), no. 1, 3–8.
- [7] H. Dulac, Détermination et integration d’une certaine classe d’équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér. (2) 32 (1908), 230–252.
- [8] W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree (Dutch), Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland. 19 (1911), 1446–1457.
- [9] W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, (Dutch) Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland. 20 (1912), 1354–1365, 21 (1013), 27–33.
- [10] N. N. Bautin, On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sbornik. 30 (1952), 181–196. Amer. Math. Soc. Transl. 72 (1954), 1–19.
- [11] V. A. Lunkevich and K. S. Sibirskii, Integrals of a general quadratic differential system in cases of a center, Differential Equations 18 (1982), no. 5, 563–568, www.mathnet.ru/eng/de/v18/i5/p786.
- [12] W. Y. Ye and Y. Q. Ye, On the conditions of a center and general integrals of quadratic differential systems, Acta Math. Sin., Engl. Ser. 17 (2001), no. 2, 229–236, DOI: https://doi.org/10.1007/s101140100114.
- [13] J. C. Artés, J. Llibre, and N. Vulpe, Complete geometric invariant study of two classes of quadratic systems, Electron. J. Differential Equations 2012 (2012), no. 09, 1–35, http://ejde.math.txstate.edu or http://ejde.math.unt.edu.
- [14] L. S. Lyagina, The integral curves of the equation y ax bxy cy x exy fy′ d2 2 2 2( ) ( )= + + ∕ + + , (in Russian), Usp. Mat. Nauk. 42 (1951), 171–183.
- [15] K. S. Sibirskii and N. Vulpe, Geometric classification of quadratic differential systems, Differ. Uravn. 13 (1977), 803–814.
- [16] T. A. Newton, Two dimensional homogeneous quadratic differential systems, SIAM Review. 20 (1978), no. 1, 120–138, https://www.jstor.org/stable/2030141.
- [17] R. Benterki and J. Llibre, Phase portraits of quadratic polynomial differential systems having as solution some classical planar algebraic curves of degree 4, Electron. J. Differential Equations 2019 (2019), no. 15, 1–25, http://ejde.math.txstate.edu or http://ejde.math.unt.edu.
- [18] A. Belfar and R. Benterki, Qualitative dynamics of five quadratic polynomial differential systems exhibiting five classical cubic algebraic curves, Rendiconti del Circolo Matematico di Palermo Series 2. 72 (2021), no. 1, 1–28, DOI: https://doi.org/10.1007/s12215-021-00675-x.
- [19] J. Chavarriga, J. Giné, I. A. Garcia and E. Ribereau, Quadratic systems having third degree invariant algebraic curves, Rev. Roumaine Math. Pures Appl. 45 (2000), 93–106.
- [20] D. A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc. 48 (1975), no. 1, 73–81, DOI: https://doi.org/10.1090/S0002-9939-1975-0356138-6.
- [21] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc. 76 (1954), no. 1, 127–148, DOI: https://doi.org/10.2307/1990747.
- [22] M. M. Peixoto, Dynamical systems, Proceedings of a Symposium held at the University of Bahia, Academic Press, New York-London, A subsidiary of Harcourt Brace Jovanovich., 1973, pp. 389–420.
- [23] W. A. Coppel, A survey of quadratic systems, J. Differential Equations 2 (1966), 293–304.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aed6ce1a-84f1-413f-bcc4-95a1660157ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.